Answer:
Always.
Step-by-step explanation:
That is the reason why when you are trying to calculate the area of a triangle you do the base x height divided by two or in half. If you printed out the triangle twice then cut it out and put the two together it would be a rectangle.
Answer:
$27.87
Step-by-step explanation:
if it is 1 by 2 you would multiply 1 x 2 and get 2 then multiply 13.87 x 2 to get 27.87 and it leaves you with $27.87
7. the formula for octagon is a=2(1+radical2)s^2
s=4
a=about 77.25
8.
Answer:
- (-16x² +10x -3) +(4x² -29x -2)
- (2x² -11x -9) -(14x² +8x -4)
- 2(x -1) -3(4x² +7x +1)
Step-by-step explanation:
I find it takes less work if I can eliminate obviously wrong answers. Toward that end, we can consider the constant terms only:
- -3 +(-2) = -5 . . . . possible equivalent
- -10 -5 = -15 . . . . NOT equivalent
- 3(-5) -2(5) = -25 . . . . NOT equivalent
- -9 -(-4) = -5 . . . . possible equivalent
- -7 -(-5) = -2 . . . . NOT equivalent
- 2(-1) -3(1) = -5 . . possible equivalent
Now, we can go back and check the other terms in the candidate expressions we have identified.
1. (-16x² +10x -3) +(4x² -29x -2) = (-16+4)x² +(10-29)x -5 = -12x² -19x -5 . . . OK
4. (2x² -11x -9) -(14x² +8x -4) = (2-14)x² +(-11-8)x -5 = -12x² -19x -5 . . . OK
6. 2(x -1) -3(4x² +7x +1) = -12x² +(2 -3·7)x -5 = -12x² -19x -5 . . . OK
All three of the "possible equivalent" expressions we identified on the first pass are fully equivalent to the target expression. These are your answer choices.
First, illustrate the problem by drawing a square inside a circle as shown in the first picture. Connect each corner of the square to the center of the circle. Since the square is inscribed in the circle, they have the same center points. Each segment drawn to the corners is a radius of the circle measuring 1 unit. Also, a square has equal sides. So, the angle made between those segments are equal. You can determine each angle by dividing the whole revolution into 4. Thus, each point is 360°/4 = 90°.
Next, cut a portion of one triangle from the circle as shown in the second picture. Since one of the angles is 90°, this is a right triangle with s as the hypotenuse. Applying the pythagorean theorem,
s = √(1²+1²) = √2
So each side of the square is √2 units. The area of the square is, therefore,
A = s² = (√2)² = 2
The area of the square is 2 square units.