Julie jogs 0.75miles each time. set 'x' to represent the unknown number of times. Total distance for the day is 6 miles. So, you multiply the distance of each run 0.75 times 'x' (unknown number of runs) and set this equal to 6 miles.
0.75x = 6 (divide each side by 0.75)
8 = x
She ran 8 times each day.
Answer:
m<SQP=124°
Step-by-step explanation:
Hi there!
We're given ΔQRS, the measure of <R (90°), and the measure of <S (34°)
we need to find m<SQP (given as x+72°)
exterior angle theorem is a theorem that states that an exterior angle (an angle on the OUTSIDE of a shape) is equal to the sum of the two remote interior angles (the angle OUTSIDE of a shape will be equal to the sum of 2 angles that are OPPOSITE to that angle).
that means that m<SQP=m<R+m<S (Exterior angle theorem)
substitute the known values into the equation
x+72°=90°+34° (substitution)
combine like terms on both sides
x+72°=124° (algebra)
subtract 72 from both sides
x=52° (algebra)
however, that's just the value of x. Because m<SQP is x+72°, add 52 and 72 together to get the value of m<SQP
m<SQP=x+72°=52°+72°=124° (substitution, algebra)
Hope this helps!
Answer:
2 to 10 or 1 to 5
Step-by-step explanation:
Answer:
Step-by-step explanation:
I'm sure you want your functions to appear as perfectly formed as possible so that others can help you. f(x) = 4(2)x should be written with the " ^ " sign to denote exponentation: f(x) = 4(2)^x
f(b) - f(a)
The formula for "average rate of change" is a.r.c. = --------------
b - a
change in function value
This is equivalent to ---------------------------------------
change in x value
For Section A: x changes from 1 to 2 and the function changes from 4(2)^1 to 4(2)^2: 8 to 16. Thus, "change in function value" is 8 for a 1-unit change in x from 1 to 2. Thus, in this Section, the a.r.c. is:
8
------ = 8 units (Section A)
1
Section B: x changes from 3 to 4, a net change of 1 unit: f(x) changes from
4(2)^3 to 4(2)^4, or 32 to 256, a net change of 224 units. Thus, the a.r.c. is
224 units
----------------- = 224 units (Section B)
1 unit
The a.r.c for Section B is 28 times greater than the a.r.c. for Section A.
This change in outcome is so great because the function f(x) is an exponential function; as x increases in unit steps, the function increases much faster (we say "exponentially").