Answer:
I think its going to be (b)
Answer:
Step-by-step explanation:
For each component, there are only two possible outcomes. Either it fails, or it does not. The components are independent. We want to know how many outcomes until r failures. The expected value is given by

In which r is the number of failures we want and p is the probability of a failure.
In this problem, we have that:
r = 1 because we want the first failed unit.
![p = 0.4[\tex]So[tex]E = \frac{r}{p} = \frac{1}{0.4} = 2.5](https://tex.z-dn.net/?f=p%20%3D%200.4%5B%5Ctex%5D%3C%2Fp%3E%3Cp%3ESo%3C%2Fp%3E%3Cp%3E%5Btex%5DE%20%3D%20%5Cfrac%7Br%7D%7Bp%7D%20%3D%20%5Cfrac%7B1%7D%7B0.4%7D%20%3D%202.5)
The expected number of systems inspected until the first failed unit is 2.5
Answer:
Step-by-step explanation:
Answer:
Between 9 and 10.
Step-by-step explanation:
We know that √81 = 9 and that √100 = 10.
Since √95 is between √81 and √100, we know it will be between 9 and 10.
√95 = 9.74679
Zzzzzzzzzzzzzzzzzzzzzzzzz