1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
5

Write an equation in standard form of the circle with the given properties.

Mathematics
1 answer:
agasfer [191]3 years ago
6 0

Answer:

x² + y² = 6

Step-by-step explanation:

The standard form of the equation of a circle centred at the origin is

x² + y² = r² ( r is the radius )

Here r = \sqrt{6} , then

x² + y² = (\sqrt{6} )² , that is

x² + y² = 6

You might be interested in
The joint probability density function of X and Y is given by fX,Y (x, y) = ( 6 7 x 2 + xy 2 if 0 < x < 1, 0 < y < 2
fredd [130]

I'm going to assume the joint density function is

f_{X,Y}(x,y)=\begin{cases}\frac67(x^2+\frac{xy}2\right)&\text{for }0

a. In order for f_{X,Y} to be a proper probability density function, the integral over its support must be 1.

\displaystyle\int_0^2\int_0^1\frac67\left(x^2+\frac{xy}2\right)\,\mathrm dx\,\mathrm dy=\frac67\int_0^2\left(\frac13+\frac y4\right)\,\mathrm dy=1



b. You get the marginal density f_X by integrating the joint density over all possible values of Y:

f_X(x)=\displaystyle\int_0^2f_{X,Y}(x,y)\,\mathrm dy=\boxed{\begin{cases}\frac67(2x^2+x)&\text{for }0

c. We have

P(X>Y)=\displaystyle\int_0^1\int_0^xf_{X,Y}(x,y)\,\mathrm dy\,\mathrm dx=\int_0^1\frac{15}{14}x^3\,\mathrm dx=\boxed{\frac{15}{56}}

d. We have

\displaystyle P\left(X

and by definition of conditional probability,

P\left(Y>\dfrac12\mid X\frac12\text{ and }X

\displaystyle=\dfrac{28}5\int_{1/2}^2\int_0^{1/2}f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=\boxed{\frac{69}{80}}

e. We can find the expectation of X using the marginal distribution found earlier.

E[X]=\displaystyle\int_0^1xf_X(x)\,\mathrm dx=\frac67\int_0^1(2x^2+x)\,\mathrm dx=\boxed{\frac57}

f. This part is cut off, but if you're supposed to find the expectation of Y, there are several ways to do so.

  • Compute the marginal density of Y, then directly compute the expected value.

f_Y(y)=\displaystyle\int_0^1f_{X,Y}(x,y)\,\mathrm dx=\begin{cases}\frac1{14}(4+3y)&\text{for }0

\implies E[Y]=\displaystyle\int_0^2yf_Y(y)\,\mathrm dy=\frac87

  • Compute the conditional density of Y given X=x, then use the law of total expectation.

f_{Y\mid X}(y\mid x)=\dfrac{f_{X,Y}(x,y)}{f_X(x)}=\begin{cases}\frac{2x+y}{4x+2}&\text{for }0

The law of total expectation says

E[Y]=E[E[Y\mid X]]

We have

E[Y\mid X=x]=\displaystyle\int_0^2yf_{Y\mid X}(y\mid x)\,\mathrm dy=\frac{6x+4}{6x+3}=1+\frac1{6x+3}

\implies E[Y\mid X]=1+\dfrac1{6X+3}

This random variable is undefined only when X=-\frac12 which is outside the support of f_X, so we have

E[Y]=E\left[1+\dfrac1{6X+3}\right]=\displaystyle\int_0^1\left(1+\frac1{6x+3}\right)f_X(x)\,\mathrm dx=\frac87

5 0
3 years ago
How do you solve 54=-9d
kiruha [24]
Hey there!


To solve this, divide the numbers 54 and -9 . . .

54 divided by -9 = -6 <------------

(-6) x -9 = 54

_________________
d = -6

_________________

Hope this helps you.
Have a great day!
7 0
3 years ago
Read 2 more answers
Consider w=sqrrt2/2(cos(225°) + isin(225°)) and z = 1(cos(60°) + isin(60°)). What is w+ z expressed in rectangular form?
SVETLANKA909090 [29]

Answer:

Option (3)

Step-by-step explanation:

w = \frac{\sqrt{2}}{2}[\text{cos}(225) + i\text{sin}(225)]

Since, cos(225) = cos(180 + 45)

                          = -cos(45) [Since, cos(180 + θ) = -cosθ]

                          = -\frac{\sqrt{2}}{2}

sin(225) = sin(180 + 45)

             = -sin(45)

             = -\frac{\sqrt{2}}{2}

Therefore, w = \frac{\sqrt{2}}{2}[-\frac{\sqrt{2}}{2}+i(-\frac{\sqrt{2}}{2})]

                      = -\frac{2}{4}(1+i)

                      = -\frac{1}{2}(1+i)

z = 1[cos(60) + i(sin(60)]

  = [\frac{1}{2}+i(\frac{\sqrt{3}}{2})

  = \frac{1}{2}(1+i\sqrt{3})

Now (w + z) = -\frac{1}{2}(1+i)+\frac{1}{2}(1+i\sqrt{3})

                   = -\frac{1}{2}-\frac{i}{2}+\frac{1}{2}+i\frac{\sqrt{3}}{2}

                   = \frac{(i\sqrt{3}-i)}{2}

                   = \frac{(\sqrt{3}-1)i}{2}

Therefore, Option (3) will be the correct option.

3 0
3 years ago
Read 2 more answers
Can someone please help me with this???​
8_murik_8 [283]

there would be 38 woman

8 0
4 years ago
Evaluate the expression 3.14(a2 + ab) when a = 3 and b = 4.
Lady_Fox [76]

Hey there!

3.14(a^2 + ab)

= 3.14(3^2 + 3 *4)

3^2

= 3 * 3

= 9

3 * 4

= 12

3.14(9 + 12)

9 + 12

= 21

3.14(21)

= 65.94

Answer: 65.94

Good luck on your assignment and enjoy your day!

~Amphitrite1040:)

6 0
3 years ago
Read 2 more answers
Other questions:
  • Two sets of equatic expressions are shown below in various forms:
    9·2 answers
  • What is a equivalent ratio to 6/25?
    10·1 answer
  • Please answer this question !! Will give brainliest !
    12·1 answer
  • The data in the table represents the value of a savings account at the end of each year for 6 years. The relationship between th
    13·1 answer
  • What is the median of these numbers :<br> 65,56,76,65,52,89,41
    7·2 answers
  • HELP ME PLEASEEE IM LITERALLY FAILING BYE
    5·2 answers
  • Simplify the following expression 4 + 3 . 7
    12·1 answer
  • Suppose you know that ∠S and ∠Y are complementary, and that m∠S = 2(m∠Y) − 75°. Find m∠Y.
    13·1 answer
  • I need help with please
    15·1 answer
  • Jack deposited $47,323.15 in an account earning 5% interest compounded annually.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!