To do this problem, you need to find how many questions per minute she can do. You would need to do 21 divided by 14. Which equals 1.5 questions per minute. From there you would do 1.5 times 30 and get 45.
So she can get 45 questions in 30 minutes.
Hope that helps!!
Answer:
The selling price of 21 articles is equal to the cost price of 18 articles. Find the loss percent. Answer: answer is 100/7 %
Answer:
1/3 =0.33
Step-by-step explanation:
<em>ju</em><em>st</em><em> </em><em>subst</em><em>itute</em><em> </em><em>the</em><em> </em><em>va</em><em>lues</em><em> </em><em>of</em><em> </em><em>x</em><em> </em><em>and </em><em>y</em><em> </em><em>int</em><em>o</em><em> </em><em>th</em><em>e</em><em> </em><em>exp</em><em>ression</em><em> </em><em>to</em><em> </em><em>get</em>
<em>4</em><em>(</em><em>2</em><em>)</em><em>+</em><em>1</em><em> </em><em>/</em><em>3</em><em>(</em><em>3</em><em>)</em><em>^</em><em>2</em>
<em>=</em><em>8</em><em>+</em><em>1</em><em> </em><em>/</em><em>3</em><em>×</em><em>9</em>
<em>=</em><em>9</em><em>/</em><em>2</em><em>7</em>
<em>=</em><em>1</em><em>/</em><em>3</em>
<em>=</em>0.33
Answer:
Pr(X >42) = Pr( Z > -2.344)
= Pr( Z< 2.344) = 0.9905
Step-by-step explanation:
The scenario presented can be modeled by a binomial model;
The probability of success is, p = 0.65
There are n = 80 independent trials
Let X denote the number of drivers that wear a seat belt, then we are to find the probability that X is greater than 42;
Pr(X > 42)
In this case we can use the normal approximation to the binomial model;
mu = n*p = 80(0.65) = 52
sigma^2 = n*p*(1-p) = 18.2
Pr(X >42) = Pr( Z > -2.344)
= Pr( Z< 2.344) = 0.9905
This is referred to as a Chemical Bond.