If <em>x</em> = -1, you have
2(-1) + 3 cos(-1) + <em>e</em> ⁻¹ ≈ -0.0112136 < 0
and if <em>x</em> = 0, you have
2(0) + 3 cos(0) + <em>e</em> ⁰ = 4 > 0
The function <em>f(x)</em> = 2<em>x</em> + 3 cos(<em>x</em>) + <em>eˣ</em> is continuous over the real numbers, so the intermediate value theorem applies, and it says that there is some -1 < <em>c</em> < 0 such that <em>f(c)</em> = 0.
They are either the same, or opposite number.
Answer:
The number of nickel coins is 10 and the number of quarter coins is 5
Step-by-step explanation:
<u><em>The correct question is</em></u>
Mary has 15 coins with the total value of $1.75 if the coins are nickels and quarters how many of each kind are there
Let
x ----> the number of nickel coins
y ----> the number of quarter coins
Remember that


we know that
Mary has 15 coins
so
-----> equation A
The total value of the coins is $1.75
so
----> equation B
Solve the system by graphing
Remember that the solution is the intersection point both graphs
using a graphing tool
The solution is the point (10,5)
therefore
The number of nickel coins is 10 and the number of quarter coins is 5
The numbers inside the parenthesis is the value of x, uses the equation associated with the value of x and solve.
H(1) Since 1 fits 1≤x≤3 use x^3
x^3 1^3 = 1
h(1) = 1
h(4) 4 fits x >3, so use 5
h(4) = 5