Answer:
£162.35.
Step-by-step explanation:
Total of letters + packages = 300.
Number of packages = 300 * 16 / ( 16+59)
= 300 * 16/75
= 64
So number of letters = 300 - 64 = 236.
No. of first class letters = 236 * 1/4 = 59.
No. of 2nd class letters = 236 - 59 = 177.
Total cost
= 64*1.2 + 0.52*59 + 0.31*177
= 162.35.
Answer
<em>length = width + 15</em>
<em>Area = length * width; area is 54 square feet.</em>
<em>Two equations are:</em>
<em>L = W + 15</em>
<em>L * W = 54</em>
<em>To solve, we substitute first equation into second equation:</em>
<em>(W + 15) * W = 54</em>
<em>w^2 + 15w = 54</em>
<em>w^2 + 15w - 54 = 0</em>
<em>(w+18)(w-3) = 0</em>
<em>w = -18 or 3</em>
<em>The width cannot be negative, so 3 is the width and since length is 15 more than width, length is 18:</em>
<em />
<em>Length = 18 feet</em>
<em>Width = 3 feet</em>
<em />
<em />
firstly let's convert the mixed fraction to improper fraction, then hmmm let's see we have two denominators, 5 and 3, and their LCD will simply be 15, so we'll multiply both sides by that LCD to do away with the denominators, let's proceed,
![\bf \stackrel{mixed}{2\frac{1}{3}}\implies \cfrac{2\cdot 3+1}{3}\implies \stackrel{improper}{\cfrac{7}{3}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{z}{5}-4=\cfrac{7}{3}\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{15}}{15\left( \cfrac{z}{5}-4 \right)=15\left( \cfrac{7}{3} \right)}\implies 3z-60=35 \\\\\\ 3z=95\implies z=\cfrac{95}{3}\implies z = 31\frac{2}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%203%2B1%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B7%7D%7B3%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7Bz%7D%7B5%7D-4%3D%5Ccfrac%7B7%7D%7B3%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B15%7D%7D%7B15%5Cleft%28%20%5Ccfrac%7Bz%7D%7B5%7D-4%20%5Cright%29%3D15%5Cleft%28%20%5Ccfrac%7B7%7D%7B3%7D%20%5Cright%29%7D%5Cimplies%203z-60%3D35%20%5C%5C%5C%5C%5C%5C%203z%3D95%5Cimplies%20z%3D%5Ccfrac%7B95%7D%7B3%7D%5Cimplies%20z%20%3D%2031%5Cfrac%7B2%7D%7B3%7D)