Answer: 
Step-by-step explanation:
Given
Subtract the expression

Answer:
0.5<2-√2<0.6
Step-by-step explanation:
The original inequality states that 1.4<√2<1.5
For the second inequality, you can think of 2-√2 as 2+(-√2).
Because of the "properties of inequalities", we know that when a positive inequality is being turned into a negative, the numbers need to swap and become negative. So, the original inequality becomes -1.5<-√2<-1.4. (Notice how the √2 becomes negative, too). This makes sense because -1.5 is less than -1.4.
Using our new inequality, we can solve the problem. Instead of 2+(-√2), we are going to switch "-√2" with both possibilities of -1.5 and -1.6. For -1.5, we would get 2+(-1.5), or 0.5. For -1.4, we would get 2+(-1.4), or 0.6.
Now, we insert the new numbers into the equation _<2-√2<_. The 0.5 would take the original equation's "1.4" place, and 0.6 would take 1.5's. In the end, you'd get 0.5<2-√2<0.6. All possible values of 2-√2 would be between 0.5 and 0.6.
Hope this helped!
<span>Problem 1: 2x > 4x - 6
2x < 6
x < 3
problem 2: -3r < 10 - r
-2r < 10
r > -5
problem 3: 5c - 4 > 8c + 2
3c < -6
c < -2</span>
Answer:
??????????
Step-by-step explanation:
Answer:
We conclude that the rule for the table in terms of x and y is:
Step-by-step explanation:
The table indicates that there is constant change in the x and y values, meaning the table represents the linear function the graph of which would be a straight line.
We know the slope-intercept form of the line equation
y = mx+b
where m is the slope and b is the y-intercept.
Taking two points
Finding the slope between (-2, -4) and (-1, -1)




We know that the y-intercept can be determined by setting x = 0 and finding the corresponding y-value.
Taking another point (0, 2) from the table.
It means at x = 0, y = 2.
Thus, the y-intercept b = 2
Using the slope-intercept form of the linear line function
y = mx+b
substituting m = 3 and b = 2
y = 3x+2
Therefore, we conclude that the rule for the table in terms of x and y is: