Answer:
B should equal 17 over 3
Step-by-step explanation:
Answer:
A sample of 997 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.
In which
z is the z-score that has a p-value of
.
The margin of error is of:

A previous study indicates that the proportion of left-handed golfers is 8%.
This means that 
98% confidence level
So
, z is the value of Z that has a p-value of
, so
.
How large a sample is needed in order to be 98% confident that the sample proportion will not differ from the true proportion by more than 2%?
This is n for which M = 0.02. So






Rounding up:
A sample of 997 is needed.
Let
x ----------> the height of the whole poster
<span>y ----------> the </span>width<span> of the whole poster
</span>
We need
to minimize the area A=x*y
we know that
(x-4)*(y-2)=722
(y-2)=722/(x-4)
(y)=[722/(x-4)]+2
so
A(x)=x*y--------->A(x)=x*{[722/(x-4)]+2}
Need to minimize this function over x > 4
find the derivative------> A1 (x)
A1(x)=2*[8x²-8x-1428]/[(x-4)²]
for A1(x)=0
8x²-8x-1428=0
using a graph tool
gives x=13.87 in
(y)=[722/(x-4)]+2
y=[2x+714]/[x-4]-----> y=[2*13.87+714]/[13.87-4]-----> y=75.15 in
the answer is
<span>the dimensions of the poster will be
</span>the height of the whole poster is 13.87 in
the width of the whole poster is 75.15 in
You would first subtract 5*8 from 168 which would leave it at 128 then divided it by 8 and then you'll end up with 16 so each tree cost 16$