To be able to determine what fraction of a day is 45 minutes, let's first determine how many minutes are there in a day.
1 day
The two enclosures will need three equal fences coming out from the wall and meeting another fence running parallel to the wall. If the fences coming out from the wall are x metres long the parallel fence will be (132 - 3x) metres long.
The area A = x(132 - 3x) = 132x - 3x^2
The derivative of A = zero when 132 - 6x = 0 which means the maximum area is when x = 22m
The maximum area = 22 x (132 - 3 x 22) = 1452 m^2
If you don’t know how to find derivatives then you could sketch the graph of y = x(132 - 3x).
This is an inverted parabola (hill) with x intercepts at 0 and 132/3 = 44.
The maximum point (top of the hill) is halfway between 0 and 44 I.e. 22m
Try any other value for x and the area will be smaller.
Answer:
5/6
Step-by-step explanation:
The months of the year are: January February March April May June July August September October November December
There are 12 months
There are 10 months that do not start with A
P (month
that does NOT begin with the letter A)
= number of months that do not start with A / total months
=10/12
=5/6
Answer:
y= 5x-3
Step-by-step explanation:
We have an intercept of -3 and a slope of 5
We can use the slope intercept form of the equation
y= mx+b where m is the slope and b is the y intercept
Substituting in the known values.
y= 5x-3
A 3d cardboard box has 6 sides, each of which are rectangles. If you unfold the 3D box, and flatten it out, then you'll be left with 6 rectangles such as what you see in the attachment below. This is one way to unfold the box. This flattened drawing is the net of the 3D rectangular prism. You can think of it as wrapping paper that covers the exterior of the box. There are no gaps or overlapping portions. If you can find the area of each piece of the net, and add up those pieces, that gets you the total area of the net. This is the exactly the surface area of the box.
In the drawing below, I've marked the sides as: top, bottom, left, right, front, back. This way you can see how the 3D box unfolds and how the sides correspond to one another. Other net configurations are possible.