The only way to solve if it is equal to something
assuming that the teacher wanted you to make it equal to zero do
0=-3x^2-21x-54
remember if we can do
xy=0 then assume x and y=0
so factor
0=-3x^2-21x-54
undistribute the -3
0=-3(x^2+7x+18)
remember 0 times anything=0 so
x^2+7x+18 must equal zero
use quadratice formula which is
if you have
ax^2+bx+c=0 then
x=
![\frac{-b+/- \sqrt{b^{2}-4ac} }{2a}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-b%2B%2F-%20%5Csqrt%7Bb%5E%7B2%7D-4ac%7D%20%7D%7B2a%7D%20)
x^2+7x+18
a=1
b=7
c=18
x=
![\frac{-7+/- \sqrt{7^{2}-4(1)(18)} }{2(1)}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20%5Csqrt%7B7%5E%7B2%7D-4%281%29%2818%29%7D%20%7D%7B2%281%29%7D%20)
x=
![\frac{-7+/- \sqrt{49-72} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20%5Csqrt%7B49-72%7D%20%7D%7B2%7D%20)
x=
![\frac{-7+/- \sqrt{-23} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20%5Csqrt%7B-23%7D%20%7D%7B2%7D%20)
i=√-1
x=
![\frac{-7+/- i\sqrt{23} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%2F-%20i%5Csqrt%7B23%7D%20%7D%7B2%7D%20)
the zerose would be
x=
![\frac{-7+ i\sqrt{23} }{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B-7%2B%20i%5Csqrt%7B23%7D%20%7D%7B2%7D%20)
or
Answer:
Step-by-step explanation:
(35 - 20)/20
15/20 = .75
.75 * 100 == 75%
75%
7 + 3.(2 - 3x) = 67
3 brackets are distributed
7+6-9x = 67
13-9x = 67
-9x = 67
x = 67/-9
Answer:
230,300 different selections.
Step-by-step explanation:
If the order does not matter, the number of possible different selections is determined as the combination of choosing four numbers out of 50:
![n=\frac{50!}{(50-4)!4!}\\\\n=\frac{50*49*48*47}{4*3*2*1} \\\\n=230,300\ combinations](https://tex.z-dn.net/?f=n%3D%5Cfrac%7B50%21%7D%7B%2850-4%29%214%21%7D%5C%5C%5C%5Cn%3D%5Cfrac%7B50%2A49%2A48%2A47%7D%7B4%2A3%2A2%2A1%7D%20%5C%5C%5C%5Cn%3D230%2C300%5C%20combinations)
There are 230,300 possible different selections.