1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
3 years ago
5

A) Let X be a random variable that can assume only positive integer values, and assume its probability function is P(X -n) A/3^n

for some constant A (n> 1). Find A.
b) Let X be a continuous random variable that can assume values between 0 and 3, and assume its density function is fx(x)- B(x2 +1) with some constant B (0< x ,3). Find B.
Mathematics
1 answer:
kramer3 years ago
5 0

Answer:

a) The value of A = 2

b) The value of B  = \dfrac{1}{12}

Step-by-step explanation:

a)

Given that:

X should be the random variable that assumes only positive integer values.

The probability function; P[X = n] = \dfrac{A}{3^n} for some constant A and n ≥ 1.

Then, let \sum \limits ^{\infty}_{n =1} P[X =n] = 1

This implies that:

A \sum \limits ^{\infty}_{n =1} \dfrac{1}{3^n}= 1

A \times  \dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1

A \times  \dfrac{\dfrac{1}{3}}{\dfrac{2}{3}} = 1

A \times \dfrac{1}{2}=1

A = 2

Thus, the value of A = 2

b)

Suppose X represents a e constant A (n> 1). Find A.

b) Let X be a continuous random variable that can assume values between 0 and 3

Then, the density function of x is:

f_x(x) = \left \{ {{B(x^2+1)}   \ \ \ 0 \le x \le 3  \ \ \ \atop {0} \ \ \ otherwise} \right.

where; B is constant.

Then, using the property of the probability density function:

\int ^3_0 \ B (x^2+1 ) \ dx = 1\\

Taking the integral, we have:

B \Big [\dfrac{x^3}{3} +x \Big ]^3_0 = 1

B \Big [\dfrac{3^3}{3} +3 \Big ]= 1

B \Big [\dfrac{27}{3} +3 \Big ] = 1

B [ 9 +3 ] = 1

B [ 12 ] = 1

Divide both sides by 12

B  = \dfrac{1}{12}

You might be interested in
Please help me solve this LCM​
hodyreva [135]

Note that

x^2 - y^2 = (x - y) (x + y)

and

x^2 + 2xy + y^2 = (x + y)^2

Then their LCM is \boxed{x + y}.

7 0
2 years ago
Which of the following expressions are equivalent to \dfrac{-10}{3}
andreyandreev [35.5K]

Answer:

B

Step-by-step explanation:

I don't know how to explain it, but I hope I got it right and that it helped you.

7 0
2 years ago
Read 2 more answers
tiana's car travel 111 miles on 3/8 of a tank of gas. how far will she be able to go on a full tank of gas?
kari74 [83]
Turn the 3/8 itto a mixed number and dived it by 111 
3 0
4 years ago
Read 2 more answers
PLEASE HURRYY I GIVE BRAINLIEST!!!
Illusion [34]

Answer:

16x+9

Hope this helps:)

8 0
3 years ago
6. I think the answer is H, could you help and check?!
Sliva [168]
Set up an equation to solve.
70% of original price equals $550, the amount Susan is paying.
0.70x = 550
8 0
3 years ago
Read 2 more answers
Other questions:
  • Find an exact value. sin(17pi/12)
    10·1 answer
  • Find the points on the lemniscate where the tangent is horizontal. 8(x2 + y2)2 = 81(x2 − y2)
    8·2 answers
  • What is the total area of his land in square miles
    10·1 answer
  • Please answer this!!
    5·1 answer
  • Please help need answer please
    10·1 answer
  • In wich sentence is the appositive phrase punctuated correctly?
    15·2 answers
  • Which is a true statement about the number 1?
    11·2 answers
  • Multiply each equation by a number that produces opposite coefficients for x or y
    14·1 answer
  • I need you help, help me pleaseeeee
    8·2 answers
  • The total area of Fred's yard is 60 square feet. The length is 6 feet. What is the width?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!