<span>The ideal mechanical advantage represents the number of times the input force is multiplied under ideal conditions, that is with no friction. Actual mechanical advantage on the other hand stands for the number of times the input force is multiplied.
Hence; IMA (ideal mechanical advantage)=Le/Lr
The Lr =0.3 +1.2 = 1.5 and Le= 0.3
= 0.3/1.5
= 1/5;
therefore the correct answer is 0.2</span>
Answer:
648.5 mL
Explanation:
Here we will assume that the pressure of the gas is constant, since it is not given or specified.
Therefore, we can use Charle's law, which states that:
"For an ideal gas kept at constant pressure, the volume of the gas is proportional to its absolute temperature"
Mathematically:

where
V is the volume of the gas
T is its absolute temperature
The equation can be rewritten as

where in this problem we have:
is the initial volume of the gas
is the initial temperature
is the final temperature
Solving for V2, we find the final volume of the gas:

Answer:
When an animal breathes out, water vapor from inside the animal's lungs is released into the air.
Explanation:
The hydrologic cycle is the cycle of water movement throughout the environment. A is the only only one that "recycles" water;
Answer:
Option D is correct.
The concentrations of both PCl₅ and PCl₃ are changing at equilibrium
Explanation:
Chemical equilibrium during a reversible chemical reaction, is characterised by an equal rate of forward reaction and backward reaction. It is better described as dynamic equilibrium.
This is because, the concentration of the elements and compounds involved in the reversible chemical reaction at equilibrium changes, but the rate of change of the reactants is always equal to the rate of change of products.
Hence, the concentration of reactants and products, such as PCl₅ and PCl₃ are allowed to change at equilibrium, but alas, the rate of forward reaction must always match the rate of backward reaction for the process to remain in a state of Chemical equilibrium.
Hope this Helps!!!