1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
10

45 Pts Pts Pts Pts pts

Mathematics
1 answer:
lesya [120]3 years ago
3 0
Don’t listen to the scams
You might be interested in
What is the volume of the rectangular prism?
Lapatulllka [165]

Answer:

36ft^3

Step-by-step explanation:

l x w x h

=6 x 3 x 2

=6 x 6

=36

36ft^3

6 0
3 years ago
Read 2 more answers
Let N be the smallest positive integer whose sum of its digits is 2021. What is the sum of the digits of N + 2021?
kondor19780726 [428]

Answer:

10.

Step-by-step explanation:

See below for a proof of why all but the first digit of this N must be "9".

Taking that lemma as a fact, assume that there are x digits in N after the first digit, \text{A}:

N = \overline{\text{A} \, \underbrace{9 \cdots 9}_{\text{$x$ digits}}}, where x is a positive integer.

Sum of these digits:

\text{A} + 9\, x= 2021.

Since \text{A} is a digit, it must be an integer between 0 and 9. The only possible value that would ensure \text{A} + 9\, x= 2021 is \text{A} = 5 and x = 224.

Therefore:

N = \overline{5 \, \underbrace{9 \cdots 9}_{\text{$224$ digits}}}.

N + 1 = \overline{6 \, \underbrace{000 \cdots 000000}_{\text{$224$ digits}}}.

N + 2021 = 2020 + (N + 1) = \overline{6 \, \underbrace{000 \cdots 002020}_{\text{$224$ digits}}}.

Hence, the sum of the digits of (N + 2021) would be 6 + 2 + 2 = 10.

Lemma: all digits of this N other than the first digit must be "9".

Proof:

The question assumes that N\! is the smallest positive integer whose sum of digits is 2021. Assume by contradiction that the claim is not true, such that at least one of the non-leading digits of N is not "9".

For example: N = \overline{(\text{A})\cdots (\text{P})(\text{B}) \cdots (\text{C})}, where \text{A}, \text{P}, \text{B}, and \text{C} are digits. (It is easy to show that N contains at least 5 digits.) Assume that \text{B} \! is one of the non-leading non-"9" digits.

Either of the following must be true:

  • \text{P}, the digit in front of \text{B} is a "0", or
  • \text{P}, the digit in front of \text{B} is not a "0".

If \text{P}, the digit in front of \text{B}, is a "0", then let N^{\prime} be N with that "0\!" digit deleted: N^{\prime} :=\overline{(\text{A})\cdots (\text{B}) \cdots (\text{C})}.

The digits of N^{\prime} would still add up to 2021:

\begin{aligned}& \text{A} + \cdots + \text{B} + \cdots + \text{C} \\ &= \text{A} + \cdots + 0 + \text{B} + \cdots + \text{C} \\ &= \text{A} + \cdots + \text{P} + \text{B} + \cdots + \text{C} \\ &= 2021\end{aligned}.

However, with one fewer digit, N^{\prime} < N. This observation would contradict the assumption that N\! is the smallest positive integer whose digits add up to 2021\!.

On the other hand, if \text{P}, the digit in front of \text{B}, is not "0", then (\text{P} - 1) would still be a digit.

Since \text{B} is not the digit 9, (\text{B} + 1) would also be a digit.

let N^{\prime} be N with digit \text{P} replaced with (\text{P} - 1), and \text{B} replaced with (\text{B} + 1): N^{\prime} :=\overline{(\text{A})\cdots (\text{P}-1) \, (\text{B} + 1) \cdots (\text{C})}.

The digits of N^{\prime} would still add up to 2021:

\begin{aligned}& \text{A} + \cdots + (\text{P} - 1) + (\text{B} + 1) + \cdots + \text{C} \\ &= \text{A} + \cdots + \text{P} + \text{B} + \cdots + \text{C} \\ &= 2021\end{aligned}.

However, with a smaller digit in place of \text{P}, N^{\prime} < N. This observation would also contradict the assumption that N\! is the smallest positive integer whose digits add up to 2021\!.

Either way, there would be a contradiction. Hence, the claim is verified: all digits of this N other than the first digit must be "9".

Therefore, N would be in the form: N = \overline{\text{A} \, \underbrace{9 \cdots 9}_{\text{many digits}}}, where \text{A}, the leading digit, could also be 9.

6 0
3 years ago
A jar of candy has 6 cinnamon, 5 peppermint and 7 spearmint candies in it. Your pick three pieces of candy out of the jar at the
Vitek1552 [10]

Answer: 3/18  simplified 1/6

Step-by-step explanation:

6+5+7= whole (18)

1+2=part (3)

3 0
4 years ago
Sam bought 3 boxes of chocolate online. Postage was $9 and the total cost was $45. How much was each box?
Katyanochek1 [597]

Answer:

12 dollars each

Step-by-step explanation:

do the math

8 0
3 years ago
Read 2 more answers
What is the best estimate of 22% of 90?
GarryVolchara [31]
The answer to the question Is 19.8
5 0
3 years ago
Read 2 more answers
Other questions:
  • There were 340,000 cattle placed on feed. Write an equivalent ratio that could be used to find how many of these cattle were bet
    12·2 answers
  • The 2's in 42,256 what do that mean
    6·1 answer
  • What is the GCF of 77, 56
    12·2 answers
  • What is the answers
    8·1 answer
  • Find the fraction half way between 1/7 and 1/5
    15·1 answer
  • What’s the square route of 6
    14·1 answer
  • Plssssss help I need an answer
    8·1 answer
  • Hi can u guys help me pla
    7·2 answers
  • HALP. First answer brainliest
    7·2 answers
  • Help need to do this in 10 min
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!