1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
3 years ago
12

What is 373827+3562828

Mathematics
2 answers:
Mila [183]3 years ago
8 0

Answer:

Your answer would be 3,936,655

Dvinal [7]3 years ago
3 0

Answer:

3,936,655

Step-by-step explanation:

You might be interested in
How can I split five brownies between three people
Bogdan [553]
Each person will get a full brownie leaving you left over with 2 full brownies. You can cut both of the remaining brownies into 3rds giving you 6 pieces. Each person can then get 2 prices. This is 1 and 2/3 brownies per person
8 0
3 years ago
Read 2 more answers
Give the domain and range. Tell if it is a function.
Anna [14]
It’s not a function
That’s all I know sorry!
6 0
3 years ago
What is the value of x<br><br> 1/5 = 25/x
Mama L [17]
First getting x as a numerator rather than a denominator. Then grouping like terms by moving 5 from the left side to the right. Work below:
\frac{1}{5} = \frac{25}{x} \\  \frac{1}{5}*x = \frac{25}{x}*x\\ \frac{1}{5}x = 25\\\frac{1}{5}x * 5 = 25*5\\x=125
3 0
3 years ago
Read 2 more answers
( LETS SEE IF YOUR SMART )
ratelena [41]

Answer:

6\leq x\leq 12

Step-by-step explanation:

First we have to write down what it says in the question in as an expression. So we know that there is already 3 people on Britany's team (herself and the two friends),  that in order to participate in the league you will need at least 9 players, and that the team can have a maximum of 15 player. So....

Let "x" be the number of people who decided to join Britany and her friends

Let "y" be the total number of people on Britanie's team, then .....

3 + x = y

Now we need to remember that in order to participate in the league you will need at least 9 players, and that the team can have a maximum of 15 player. We can write that down as......

9\leq y\leq 15

Now from this we know that the minimum value that x would need to take in order for Brittany's team to participate can be found by solving 3 + x = 9. The maximum value that x would need to take in order for Brittany's team to participate can be found by solving 3 + x = 15. And so we get.....

Minimum value:

3 + x = 9

x = 9 -3

x = 6

Maximum value:

3 + x = 15

x = 15 - 3

x = 12

Now we know that x will be equal to any integer between 6 and 12 so

6\leq x\leq 12

4 0
3 years ago
How do I evaluate this using trigonometric substitution?<br><br>∫dx/(81x^2+4)^2
Daniel [21]

Answer:

\displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C

General Formulas and Concepts:

<u>Alg I</u>

  • Terms/Coefficients
  • Factor
  • Exponential Rule [Dividing]: \displaystyle \frac{b^m}{b^n} = b^{m - n}

<u>Pre-Calc</u>

[Right Triangle Only] Pythagorean Theorem: a² + b² = c²

  • a is a leg
  • b is a leg
  • c is hypotenuse

Trigonometric Ratio: \displaystyle sec(\theta) = \frac{1}{cos(\theta)}

Trigonometric Identity: \displaystyle tan^2\theta + 1 = sec^2\theta

TI: \displaystyle sin(2x) = 2sin(x)cos(x)

TI: \displaystyle cos^2(\theta) = \frac{cos(2x) + 1}{2}

<u>Calc</u>

Integration Rule [Reverse Power Rule]:                                                                \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

IP [Addition/Subtraction]:                                                             \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

U-Trig Substitution: x² + a² → x = atanθ

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle \int {\frac{dx}{(81x^2 + 4)^2}}

<u>Step 2: Identify Sub Variables Pt.1</u>

Rewrite integral [factor expression]:

\displaystyle \int {\frac{dx}{[(9x)^2 + 4]^2}}

Identify u-trig sub:

\displaystyle x = atan\theta\\9x = 2tan\theta \rightarrow x = \frac{2}{9}tan\theta\\dx = \frac{2}{9}sec^2\theta d\theta

Later, back-sub θ (integrate w/ respect to <em>x</em>):

\displaystyle tan\theta = \frac{9x}{2}  \rightarrow \theta = arctan(\frac{9x}{2})

<u>Step 3: Integrate Pt.1</u>

  1. [Int] Sub u-trig variables:                                                                                 \displaystyle \int {\frac{\frac{2}{9}sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  2. [Int] Rewrite [Int Prop - MC]:                                                                           \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[(2tan\theta)^2 + 4]^2}} \ d\theta
  3. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4tan^2\theta + 4]^2}} \ d\theta
  4. [Int] Factor:                                                                                                      \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4(tan^2\theta + 1)]^2}} \ d\theta
  5. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{[4sec^2\theta]^2}} \ d\theta
  6. [Int] Evaluate exponents:                                                                                \displaystyle \frac{2}{9} \int {\frac{sec^2\theta}{16sec^4\theta} \ d\theta
  7. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{72} \int {\frac{sec^2\theta}{sec^4\theta} \ d\theta
  8. [Int] Divide [ER - D]:                                                                                         \displaystyle \frac{1}{72} \int {\frac{1}{sec^2\theta} \ d\theta
  9. [Int] Rewrite [TR]:                                                                                            \displaystyle \frac{1}{72} \int {cos^2\theta} \ d\theta
  10. [Int] Rewrite [TI]:                                                                                              \displaystyle \frac{1}{72} \int {\frac{cos(2\theta) + 1}{2}} \ d\theta
  11. [Int] Rewrite [Int Prop - MC]:                                                                          \displaystyle \frac{1}{144} \int {cos(2\theta) + 1} \ d\theta
  12. [Int] Rewrite [Int Prop - A/S]:                                                                          \displaystyle \frac{1}{144} [\int {cos(2\theta) \ d\theta + \int {1} \ d\theta]  

<u>Step 4: Identify Sub Variables Pt.2</u>

Determine u-sub for trig int:

u = 2θ

du = 2dθ

<u>Step 5: Integrate Pt.2</u>

  1. [Ints] Rewrite [Int Prop - MC]:                                                                       \displaystyle \frac{1}{144} [\frac{1}{2} \int {2cos(2\theta) \ d\theta + \int {1 \theta ^0} \ d\theta]
  2. [Int] U-Sub:                                                                                                     \displaystyle \frac{1}{144} [\frac{1}{2} \int {cos(u) \ du + \int {1 \theta ^0} \ d\theta]
  3. [Ints] Integrate [Trig/Int Rule - RPR]:                                                             \displaystyle \frac{1}{144} [\frac{1}{2} sin(u) + \theta + C]
  4. [Expression] Back Sub:                                                                                 \displaystyle \frac{1}{144} [\frac{1}{2} sin(2 \theta) + arctan(\frac{9x}{2}) + C]
  5. [Exp] Rewrite [TI]:                                                                                           \displaystyle \frac{1}{144} [\frac{1}{2}(2sin(\theta)cos(\theta)) + arctan(\frac{9x}{2}) + C]
  6. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [sin(\theta)cos(\theta) + arctan(\frac{9x}{2}) + C]
  7. [Exp] Back Sub:                                                                                             \displaystyle \frac{1}{144} [sin(arctan(\frac{9x}{2}))cos(arctan(\frac{9x}{2})) + arctan(\frac{9x}{2}) + C]

<u>Step 6: Triangle</u>

Find trig values:

\displaystyle tan\theta = \frac{9x}{2}

\displaystyle \theta = arctan(\frac{9x}{2})

tanθ = opposite / adjacent; solve hypotenuse of right triangle, determine trig ratios:

sinθ = opposite / hypotenuse

cosθ = adjacent / hypotenuse

Leg <em>a</em> = 2

Leg <em>b</em> = 9x

Leg <em>c</em> = ?

  1. Sub variables [PT]:                                                                                         \displaystyle 2^2 + (9x)^2 = c^2
  2. Evaluate exponents:                                                                                      \displaystyle 4 + 81x^2 = c^2
  3. [Equality Property] Square root both sides:                                                  \displaystyle \sqrt{4 + 81x^2} = c
  4. Rewrite:                                                                                                           c = \sqrt{81x^2 + 4}

Substitute into trig ratios:

\displaystyle sin\theta = \frac{9x}{\sqrt{81x^2 + 4}}

\displaystyle cos\theta = \frac{2}{\sqrt{81x^2 + 4}}

<u>Step 7: Integrate Pt.3</u>

  1. [Exp] Sub variables [TR]:                                                                               \displaystyle \frac{1}{144} [\frac{9x}{\sqrt{81x^2 + 4}} \cdot \frac{2}{\sqrt{81x^2 + 4}} + arctan(\frac{9x}{2}) + C]
  2. [Exp] Multiply:                                                                                                 \displaystyle \frac{1}{144} [\frac{18x}{81x^2 + 4} + arctan(\frac{9x}{2}) + C]
  3. [Exp] Distribute:                                                                                             \displaystyle \frac{1}{144}arctan(\frac{9x}{2}) + \frac{x}{8(81x^2 + 4)} + C
3 0
3 years ago
Other questions:
  • Last season, the Roswell Hornets outscored their opponents 5:2. If their opponents scored 28 points, how many points did the Hor
    11·1 answer
  • find the equation of a straight line passing through the points (3,2)and (-3,6)giving the answer in the form x/a+y/b ,where a an
    5·1 answer
  • If mangleT = (7x − 14)°, find the measure of the following.<br><br><br> Complement of angleT.
    8·1 answer
  • Y=? Please help ASAPPP will mark brainliest
    11·2 answers
  • Find the surface area of the prism.<br><br> _ m2
    12·1 answer
  • A set of 6 number cards contain the numbers 2, 5, 7, 8, 9, and 11. Which ratio is less than the ratio of odd number cards to tot
    12·1 answer
  • 20% of the students in the class play an instrument. if there are 35 students in class, how many play an instrument?
    15·1 answer
  • Someone please help this is due in an hour
    6·1 answer
  • A city block has 6 pigeons and then 1 week later there are 9 pigeons. Let P(t)be the number of pigeons where t is measured in we
    13·1 answer
  • 17 + x =31 <br> i need help
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!