Answer: x = {-1, -3, 2}
<u>Step-by-step explanation:</u>
x³ + 2x² - 5x - 6 = 0
Use the rational root theorem to find the possible roots: ±1, ±2, ±3, ±6
Use Long division, Synthetic division, or plug them into the equation to see which root(s) work <em>(result in a remainder of zero)</em>.
I will use Synthetic division. Let's try x = 1
1 | 1 2 -5 -6
|<u> ↓ 1 3 -2 </u>
1 3 -2 -8 ← remainder ≠ 0 so x = 1 is NOT a root
Let's try x = -1
- 1 | 1 2 -5 -6
|<u> ↓ -1 -1 6 </u>
1 1 -6 0 ← remainder = 0 so x = -1 is a root!
The coefficients of the reduced polynomial are: 1, 1, -6 --> x² + x - 6
Factor: x² + x - 6
(x + 3)(x - 2)
Set those factors equal to zero to solve for x:
x + 3 = 0 --> x = -3
x - 2 = 0 --> x = 2
Using Synthetic Division and Factoring the reduced polynomial, we found
x = -1, -3, and 2
Answer:
A B and C are true
Step-by-step explanation:
We have that
A(-2,-4) B(8,1) <span>
let
M-------> </span><span>the coordinate that divides the directed line segment from A to B in the ratio of 2 to 3
we know that
A--------------M----------------------B
2 3
distance AM is equal to (2/5) AB
</span>distance MB is equal to (3/5) AB
<span>so
step 1
find the x coordinate of point M
Mx=Ax+(2/5)*dABx
where
Mx is the x coordinate of point M
Ax is the x coordinate of point A
dABx is the distance AB in the x coordinate
Ax=-2
dABx=(8+2)=10
</span>Mx=-2+(2/5)*10-----> Mx=2
step 2
find the y coordinate of point M
My=Ay+(2/5)*dABy
where
My is the y coordinate of point M
Ay is the y coordinate of point A
dABy is the distance AB in the y coordinate
Ay=-4
dABy=(1+4)=5
Mx=-4+(2/5)*5-----> My=-2
the coordinates of point M is (2,-2)
see the attached figure
I think the answer might be x=4/8
If the width is 28 inches, then divide that by 4 and you get 7. You multiply that by 5 to get the length. That would be 35. Just to check, you know that the width 28 and length 35 are in ratio 4:5 if you divide by 7. The perimeter would be 2(35+28)=63*2=126. So the perimeter is 126. The area would be 35*28 which is 980. To sum up, the answers are as follows.
Length: 35 in
Perimeter: 126 in
Area: 980 inches squared.