Answer:- 0.273 kg
Solution:- A double replacement reaction takes place. The balanced equation is:

We have 0.29 L of 22% m/v aluminum nitrate solution. m/s stands for mass by volume. 22% m/v aluminium nitrate solution means 22 g of it are present in 100 mL solution. With this information, we can calculate the grams of aluminum nitrate present in 0.29 L.

= 63.8 g aluminum nitrate
From balanced equation, there is 1:3 mol ratio between aluminum nitrate and sodium chlorate. We will convert grams of aluminum nitrate to moles and then on multiplying it by mol ratio we get the moles of sodium chlorate that could further be converted to grams.
We need molar masses for the calculations, Molar mass of sodium chlorate is 106.44 gram per mole and molar mass of aluminum nitrate is 212.99 gram per mole.

= 
sodium chlorate solution is 35% m/m. This means 35 g of sodium chlorate are present in 100 g solution. From here, we can calculate the mass of the solution that will contain 95.7 g of sodium chlorate and then the grams are converted to kg.

= 0.273 kg
So, 0.273 kg of 35% m/m sodium chlorate solution are required.
Answer:
4.823 x 10^-19 J
Explanation:
Energy is calculated by E = hv where h - Planck's constant in joule.s
v - frequency.
in this particular question the wave length is 4.12 x 10^-7 m. to exhaustively use this we need a relation between wave length & frequency. c=wv where C is approximately 3 x 10^8m/s
-v = c/w = 3x10^8m/s / 4.12 x 10^-7m = 7.28 x 10^14 Hz or 1/sec
now we can simply use Planck's constant in E=hv =
(6.626 x 10^-34) x (7.28 x 10^14Hz) = 4.823 x 10^-19 J.
The correct matches are as follows:
<span>1.instantaneous combustion
</span>G.burning<span>
2.mass of substances before and after a reaction is the same
</span>C.Law of Conservation of Matter<span>
3.substances that combine
</span>A.reactants
<span>
4. Yields or makes
</span>B.arrow symbol
<span>
5.rapid oxidation
</span>F.explosion<span>
6.new substance
</span>D.product
<span>
7.slow oxidation
</span>E.rust
<span>
Hope this answers the question. Have a nice day.
</span>
Use the state equation for ideal gases: pV = nRT
Data:
V = 88.89 liter
n = 17 mol
T = 67 + 273.15 = 340.15 K
R = 0.0821 atm * liter / (K*mol)
=> p = nRT / V = 17 mol * 0.0821 (atm*liter / K*mol) * 340.15 K / 88.89 liter
p = 5.34 atm
Answer: p = 5.34 atm