the data represents the heights of fourteen basketball players, in inches. 69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 8
Daniel [21]
If you would like to know the interquartile range of the new set and the interquartile range of the original set, you can do this using the following steps:
<span>The interquartile range is the difference between the third and the first quartiles.
The original set: </span>69, 70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77, 82
Lower quartile: 72
Upper quartile: 76.25
Interquartile range: upper quartile - lower quartile = 76.25 - 72 = <span>4.25
</span>
The new set: <span>70, 72, 72, 74, 74, 74, 75, 76, 76, 76, 77, 77
</span>Lower quartile: 72.5
Upper quartile: 76
Interquartile range: upper quartile - lower quartile = 76 - 72.5 = 3.5
The correct result would be: T<span>he interquartile range of the new set would be 3.5. The interquartile range of the original set would be more than the new set.</span>
Answer:
3*(7 + 2) = 3*7 + 3*2
Option 3
Step-by-step explanation:
Distributive property of multiplication over addition:
a*(b+ c) = (a*b ) + (a * c)
(-6y-2)+5(3+2.5y) expend
-6y-2+15+12.5
6.5y+13
In cylindrical coordinates, we have
, so that

correspond to the upper and lower halves of a sphere with radius
. In spherical coordinates, this sphere is
.
means our region is between two cylinders with radius 1 and
. In spherical coordinates, the inner cylinder has equation

This cylinder meets the sphere when

which occurs at

where
. Then
.
The volume element transforms to

Putting everything together, we have
