Answer:
<u>It</u><u> </u><u>moved</u><u> </u><u>for</u><u> </u><u>1</u><u>5</u><u>2</u><u>.</u><u>7</u><u> </u><u>seconds</u>
Step-by-step explanation:
Time taken/ period, T :

substitute the variables:

In seconds:

False, 20 is not a factor of 24
Answer:
The given statement that value 5 is an upper bound for the zeros of the function f(x) = x⁴ + x³ - 11x² - 9x + 18 will be true.
Step-by-step explanation:
Given

We know the rational zeros theorem such as:
if
is a zero of the function
,
then
.
As the
is a polynomial of degree
, hence it can not have more than
real zeros.
Let us put certain values in the function,
,
,
,
,
,
,
,
, 
From the above calculation results, we determined that
zeros as
and
.
Hence, we can check that

Observe that,
,
increases rapidly, so there will be no zeros for
.
Therefore, the given statement that value 5 is an upper bound for the zeros of the function f(x) = x⁴ + x³ - 11x² - 9x + 18 will be true.
Alright, so we'd use the combinations with repetition formula, so we choose from 4 schools to distribute to and distribute 8 blackboards. It's then
( 8+4-1)!/8!(4-1)!=11!/(3!*8!)=165
For at least one blackboard, we first distribute 1 to each school and then have 4 blackboards left, getting (4+4-1)!/4!(4-1)!=7!/(4!*3!)=35
Answer:
100 students on each bus
Step-by-step explanation:
100*4 is 400 so there might be just 4