While bond energies and bond enthalpies can be used to estimate the heat of reaction (enthalpy change of a reaction), H, the heat of neutralization is the heat released when 1 mole of water is generated by the reaction of an acid and a base (reaction).
For the same type of bond, bond enthalpies differ from compound to compound. For instance, the C-H bond enthalpy in methane is nearly identical to that of ethane, butane, etc. When we look up the bond enthalpy for a C-H bond in a table of bond enthalpies, the average number that results may only be accurate to two or three significant figures.
Each compound's enthalpies of production are listed, and those numbers take into account any minor variations in the enthalpies of each bond. Therefore, the result will be more accurate if you utilize formation enthalpies rather than average bond enthalpies to compute a given reaction's enthalpy change.
Learn more about Bond enthalpy here-
brainly.com/question/9998007
#SPJ4
Kinetic energy and potential energy
There are more oxygen atoms in the reactants while there are less oxygen atoms in the product.
Both sides of the equation is supposed to be balanced for a balanced equation. If any one of them isn't balanced, the equation remains unbalanced.
The main reason why the reaction above can not be balanced is:
This chemical reaction SO2 + H2O -> H2SO2 is not correctly written.
It must be: SO2 + H2O -> H2SO3
<em>hope this helps....</em>