The standard formation equation for glucose C6H12O6(s) that corresponds to the standard enthalpy of formation or enthalpy change ΔH°f = -1273.3 kJ/mol is
C(s) + H2(g) + O2(g) → C6H12O6(s)
and the balanced chemical equation is
6C(s) + 6H2(g) + 3O2(g) → C6H12O6(s)
Using the equation for the standard enthalpy change of formation
ΔHoreaction = ∑ΔHof(products)−∑ΔHof(Reactants)
ΔHoreaction = ΔHfo[C6H12O6(s)] - {ΔHfo[C(s, graphite) + ΔHfo[H2(g)] + ΔHfo[O2(g)]}
C(s), H2(g), and O2(g) each have a standard enthalpy of formation equal to 0 since they are in their most stable forms:
ΔHoreaction = [1*-1273.3] - [(6*0) + (6*0) + (3*0)]
= -1273.3 - (0 + 0 + 0)
= -1273.3
Answer:Phase changes require either the addition of heat energy (melting, evaporation, and sublimation) or subtraction of heat energy (condensation and freezing). ... Changing the amount of heat energy usually causes a temperature change.
Explanation:
Explanation:
Contributing structures are the resonating structures which are formed due to the delocalization of electrons in a molecule.
The azide ion that is
, is a symmetrical ion, all of whose contributing structures have formal charges.
Lone pair of central nitrogen atom in azide ion is in conjugation with the neighboring nitrogen atoms.
Contributing structures of azide ion are drawn in the image attached.
Answer:
A
Explanation:
I guess it's a, because nuclear decay is likely to occur when either the mass or atomic number is greater than 83.