Answer:
c. -1020.9 kJ
Explanation:
4Fe (s) + 3 O₂ (g) --> 2 Fe₂O₃(s) ΔH = -826.0 kJ/mol.
atomic weight of iron = 56
69.03 g = 69.03 / 56
= 1.23268 moles
Heat released by 1.23268 moles
= 1.23268 x 826.0
= -1020.9 kJ .
Answer:
Option A. 70.0 KPa.
Explanation:
Data obtained from the question include:
Pressure (torr) = 525.4 torr
Pressure (kPa) =?
The pressure expressed in torr can be converted kPa as shown below:
760 torr = 101.325 KPa
Therefore,
525.4 torr = (525.4 x 101.325) / 760 = 70.0 KPa.
Therefore, 525.4 torr is equivalent to 70.0 KPa.
The percentage of Chromium in Chromium Oxide is calculated as follow,
Step 1: Calculate Molar mass of Cr₂O₃,
Cr = 51.99 u
O = 16 u
So,
2(51.99) + 3(16) = 103.98 + 48 = 151.98 u
Step 2: Secondly divide molar mass of only chromium with total mass of Cr₂O₃ and multiply with 100.
i.e.
=

× 100
=
68.41 %
So, the %age composition of chromium in chromium oxide is
68.41 %.
Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = 
Enthalpy of formation of chlorine gas = 
Enthalpy of formation of ICl gas = 
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:

Entropy of the surrounding = 

1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.