First one is true second one is False
Answer:
n = Initial volume/22.4L
Explanation:
The molar concept is simply one that is used to find the Number of moles and explain the relationship it has with avogadro's number, molecular mass, molar mass e.t.c.
Now, in terms of molar mass, number of moles is given by the formula;
n = mass of the sample/molar mass
In terms of avogadro's number, number of moles is;
1 mole = avogadro's number = 6.02 × 10^(23)
Now, when dealing with ideal gases, the molar volume of an ideal gas is 22.4 L.
Now the relationship between this volume and the mole concept is that the number of moles is gotten by dividing the initial volume by this molar volume.
Thus;
n = Initial volume/22.4L
Answer:
From the periodic table:
mass of carbon = 12 grams
mass of hydrogen = 1 grams
mass of oxygen = 16 grams
molar mass of surcose = 12(12) + 22(1) + 11(16) = 342 grams
number of molecules = number of moles x Avogadro's number
number of moles = number of molecules / Avogadro's number
number of moles = (2.2x10^17) / (6.02x10^23) = 3.6544 x 10^-7 moles
number of moles = mass / molar mass
mass = number of moles x molar mass
= 1.7 x 10^17/6.022 x 10^23.
→ is the net ionic equation for this reaction.
<h3>What is an ionic equation?</h3>
An ionic equation is a synthetic equation where electrolytes are composed as separated particles.
→ is the net ionic equation for this reaction.
A balanced ionic equation. shows the reacting ions. in a chemical reaction. These equations can be used to represent what happens in precipitation reactions.
Learn more about ionic equation here:
brainly.com/question/16225321
#SPJ1
1) H
2) He
3) Li
4) Be
5) B
6) C
7) N
8) O
9) F
10) Ne
11) Na
12) Mg
13) Al
14) Si
15) P
16) S
17) Cl
18) Ar
19) K