Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.
The elements in the periodice table are not listed in alphabetical order, because the arragement in rows (periods) and columns (groups or familes), in increasing order of atomic number (number of protons of the atoms) permits to explain similarities among the elements, trend in some properties, and even predict properties of unknown elements.
For example, the elements of the first group (family), called alkaline metals, all have 1 valence electron, have similar physical properties (ductibility, malleability, luster, thermal and electricity conductivity), react in similar way with water, show a trend in the atomic radii and in the ionization energy.
You can tell similar stories for other groups like, alkalyne earth metals, halogens and noble gases.
You can also tell trends in electroneativities, and atomic radii, for a row of elements, as per the order they are in the row.
So, the current array resulted very helpul for chemists to explain and predict the behavior and properties of the elements.