Idek I just need free points so I can use this app for free
At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
<h3>
What is
Avogadro's law?</h3>
Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."
It is expressed as;
V₁/n₁ = V₂/n₂
Given the data in the question;
- Initial amount of gas n₁ = 2moles
- Initial volume v₁ = 13.9L
- Final amount of gas n₁ = 3moles
V₁/n₁ = V₂/n₂
V₁n₂ = V₂n₁
V₂ = V₁n₂ / n₁
V₂ = (13.9L × 3moles) / 2moles
V₂ = 41.7molL / 2mol
V₂ = 20.85L
At constant temperature and pressure, If the amount of gas increases to the given value, its volume also increases to 20.85L.
Learn more about Avogadro's law here: brainly.com/question/15613065
#SPJ1
Jupiter's atmosphere is composed predominantly of hydrogen and helium, but if you have to select any one option then we can look at the percentage of existence of these elements that would be
<span>90 percent hydrogen.
remaining 10 percent is helium
so choose Hydrogen.</span>
Answer:
The natural phenomenon used to describe the length of a meter is the speed of light. The length of a meter is the length a light path travels in 1/(299792458) seconds through a vacuum.
The definition is better due to the uncertainty involved in the use of the length of a standard meter stick because the length of the meter stick could change due to atmospheric conditions from place to place
Explanation:
<h2>

=
![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
</h2>
Explanation:
- When an aqueous solution of a certain acid is prepared it is dissociated is as follows-
⇄ 
Here HA is a protonic acid such as acetic acid, 
- The double arrow signifies that it is an equilibrium process, which means the dissociation and recombination of the acid occur simultaneously.
- The acid dissociation constant can be given by -
= ![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
- The reaction is can also be represented by Bronsted and lowry -
⇄ ![[H_3O^+] [A^-]](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%5BA%5E-%5D)
- Then the dissociation constant will be
= ![\dfrac{[H_3O^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH_3O%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Here,
is the dissociation constant of an acid.