

To solve these type of problems you need to use the pythagoras theorem ⇨ Hypotenuse² = Base² + Altitude².
Here,
- Altitude = 1.6 cm.
- Base = 1.2 cm
- Hypotenuse = x
Now, let's solve for x.
Hypotenuse² = Base² + Altitude²
x² = (1.2)² + (1.6)²
x² = 1.44 + 2.56
x² = 4
x = √4
x = <em><u>2</u></em><em><u>.</u></em>
- So, the value of x is <em><u>2</u><u> </u><u>cm.</u></em>
<h3>
<u>NOTE</u><u> </u><u>:</u><u>-</u></h3>
- Pythagoras theorem can be used only in the cases of right-angled triangles. Here, it's given that the triangle is right angled so we can use this theorem.
- To solve the squares if decimals, take them as whole numbers & then just add the decimal points. For example, ⇨ for (1.2)², take it as 12² , then multiply 12 by 12, you'll get 144. Now, add the decimal place accordingly ⇨ 1.44 . So, (1.2)² = 1.44.
Answer:
Should be glide reflection
Step-by-step explanation:
Answer:
<h2>
16.6 ft</h2>
Step-by-step explanation:
The height of the house, the ground and the ladder forms a right angle triangle, with the following parameters stated below.
1. the hypotenuse is the length of the ladder which is 30 feet
2.the opposite is the height of the house, which is 25 feet
3. the adjacent is the distance of the ladder away from the building, this is the parameter we are solving for.
Since we have two sides of the triangle given, we can employ Pythagoras theorem to solve for the third side of the triangle
let the the opposite be x
we know that

Solving for x we have

Hence the maximum distance away from house that he can place
the ladder is 16.6 ft to the nearest foot
Answer:

Step-by-step explanation:
