Step-by-step explanation:
Note that t = d/r where t is time, d is distance, and r is rate/speed.
We can come up with two equations with the information given and the equation:
t_1 hr = (10 km)/(x km/hr)
t_2 hr = (12 km)/(x - 1 km/hr)
<em>where t_1 is the time taken to run the 10km the first day and t_2 is the time taken to run the 12km the second day.</em>
We know that 30 minutes is 1/2 of an hour and that t_1 is 30 minutes less than t_2 (as stated in the question). Therefore, we can write:
t_1 = t_2 - 1/2
Substituting the values we derived:
(10 km)/(x km/hr) = (12 km)/(x - 1 km/hr) -1/2
Then we can evaluate by multiplying by 2x(x-1) on both sides:
20(x-1) = 24x - (x)(x-1)
20x - 20 = 24x - x^2 + x
x^2 -5x -20 = 0
And we are done.
I hope this helps! :)
2(21x − 7) + 4(3x + 2) = 6(2x + 9) + 3
42x - 14 + 12x + 8= 12x + 54 + 3
54x - 6= 12x + 57
54x=12x + 63
42x=63
x= 63/42
x= 3/2