1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ede4ka [16]
3 years ago
13

Answer for points 3(3x3)(45x6)(45x7)(56x5)(5x5)x0

Mathematics
2 answers:
8090 [49]3 years ago
8 0

Answer:

0

Step-by-step explanation:

3(3x3)(45x6)(45x7)(56x5)(5x5)x0 =0

Lapatulllka [165]3 years ago
8 0
The correct answer is 0 because anything X 0 equals 0! I hope this helps!
You might be interested in
Solve the question below
Svet_ta [14]

Answer:

HK

Step-by-step explanation:

Please let me know if you want me to add an explanation as to why this is the answer. I can definitely do that, I just don’t want to waste my time in case you don’t want me to :)

5 0
3 years ago
Read 2 more answers
0.8 rounded to nearest hundred
Tju [1.3M]

Answer:

1

Step-by-step explanation:

extending answer to be able to send

8 0
3 years ago
Read 2 more answers
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
2 years ago
Read 2 more answers
Can someone answer this ITS DUE TOMORROW
zaharov [31]

Answer:

a-x

b-/

Step-by-step explanation:

64/4x4=64

625x25/25=625

3 0
2 years ago
1. Determine the lateral and total surface
d1i1m1o1n [39]
I hope you find the answer I needed points quickly I’m doing a timed quiz I apologize
4 0
3 years ago
Other questions:
  • Help me i hate word problems
    5·1 answer
  • Could you help me find the volume?
    12·2 answers
  • Write a sentence that explains the relationship between the two numbers.
    14·1 answer
  • What is the answer for 5kx+6=7kx solve for x
    14·2 answers
  • What is the total weight of 249 g in pounds
    12·2 answers
  • A pair of in-line skates is on sale for $90 iF this price represents 9% discount form the original price,what is the original pr
    10·1 answer
  • Which of the following expressions results in 0 when evaluated at x = 4?
    14·2 answers
  • Midpoint of R(-4,3) and S(5,6)
    9·1 answer
  • Please find the slope of these Thank you sm
    14·2 answers
  • Please help me with 7 and 9. First best answer gets brainlist.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!