1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OlgaM077 [116]
2 years ago
9

I WILL GIVE 5 STARS SAY THANKS AND MARK BRAINLIEST FOR RIght While training for a marathon, Jan lost 4.2% of her mass. If she lo

st 2.1 kg, what was her mass, in kilograms, before she started training?
Mathematics
1 answer:
daser333 [38]2 years ago
3 0

Answer:

50 kg

Step-by-step explanation:

You might be interested in
For what value of g does the function f(g) = g2 + 3g equal 18?
nikdorinn [45]

Answer:

B) 3

Step-by-step explanation:

f(3) = 3^2 + 3(3) = 9 + 9 = 18

3 0
1 year ago
Three more than the quotient of a number and 8 is equal to 9
garri49 [273]

Answer:

The number is 48.

Step-by-step explanation:

x/8+3=9

x/8=9-3

x/8=6

x=6*8

x=48

6 0
2 years ago
Find the surface area of the rectangular prism.<br> 8 m<br> 4 m<br> 1 m
Dmitry_Shevchenko [17]

Answer:

A=2(wl+hl+hw)

Step-by-step explanation:

5 0
2 years ago
Consider a line passing through the points A(–28, –13) and B(28, 15). Type the y-value for the point C(–24, y) to ensure that po
Nostrana [21]

Step-by-step explanation:

\frac{y_2-y_1}{x_2-x_1}=\frac{15-(-13)}{28-(-28)}\\=\frac{28}{2(28)}\\\therefore\ m=\frac{1}{2}\\\frac{y-y_1}{xl-x_1}=m]\\\frac{y+13}{x+28}=\frac{1}{2}\\2y+26=x+28\\2y=x+2\\ y=\frac{1}{2}x+1

In order to find y for point C on AB, substitute point C in line equation if AB.

y=\frac{1}{2}(-24)+1\\\therefore y=-12+1=11\\\therefore C(-24, -11)

7 0
2 years ago
For each vector field f⃗ (x,y,z), compute the curl of f⃗ and, if possible, find a function f(x,y,z) so that f⃗ =∇f. if no such f
butalik [34]

\vec f(x,y,z)=(2yze^{2xyz}+4z^2\cos(xz^2))\,\vec\imath+2xze^{2xyz}\,\vec\jmath+(2xye^{2xyz}+8xz\cos(xz^2))\,\vec k

Let

\vec f=f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k

The curl is

\nabla\cdot\vec f=(\partial_x\,\vec\imath+\partial_y\,\vec\jmath+\partial_z\,\vec k)\times(f_1\,\vec\imath+f_2\,\vec\jmath+f_3\,\vec k)

where \partial_\xi denotes the partial derivative operator with respect to \xi. Recall that

\vec\imath\times\vec\jmath=\vec k

\vec\jmath\times\vec k=\vec i

\vec k\times\vec\imath=\vec\jmath

and that for any two vectors \vec a and \vec b, \vec a\times\vec b=-\vec b\times\vec a, and \vec a\times\vec a=\vec0.

The cross product reduces to

\nabla\times\vec f=(\partial_yf_3-\partial_zf_2)\,\vec\imath+(\partial_xf_3-\partial_zf_1)\,\vec\jmath+(\partial_xf_2-\partial_yf_1)\,\vec k

When you compute the partial derivatives, you'll find that all the components reduce to 0 and

\nabla\times\vec f=\vec0

which means \vec f is indeed conservative and we can find f.

Integrate both sides of

\dfrac{\partial f}{\partial y}=2xze^{2xyz}

with respect to y and

\implies f(x,y,z)=e^{2xyz}+g(x,z)

Differentiate both sides with respect to x and

\dfrac{\partial f}{\partial x}=\dfrac{\partial(e^{2xyz})}{\partial x}+\dfrac{\partial g}{\partial x}

2yze^{2xyz}+4z^2\cos(xz^2)=2yze^{2xyz}+\dfrac{\partial g}{\partial x}

4z^2\cos(xz^2)=\dfrac{\partial g}{\partial x}

\implies g(x,z)=4\sin(xz^2)+h(z)

Now

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+h(z)

and differentiating with respect to z gives

\dfrac{\partial f}{\partial z}=\dfrac{\partial(e^{2xyz}+4\sin(xz^2))}{\partial z}+\dfrac{\mathrm dh}{\mathrm dz}

2xye^{2xyz}+8xz\cos(xz^2)=2xye^{2xyz}+8xz\cos(xz^2)+\dfrac{\mathrm dh}{\mathrm dz}

\dfrac{\mathrm dh}{\mathrm dz}=0

\implies h(z)=C

for some constant C. So

f(x,y,z)=e^{2xyz}+4\sin(xz^2)+C

3 0
3 years ago
Other questions:
  • A dolphin is 1,000 feet below the sea level, it begins ascending at the rate of 20 feet per second. Assume the dolphins continue
    8·1 answer
  • 10a - 35 = -8a + 1 (please show work)
    15·2 answers
  • Trey's Coffee Shop makes a blend that is a mixture of two types of coffee. Type A coffee costs Trey $4.80 per pound, and type B
    7·1 answer
  • Can some one ☝️ plz help me
    13·1 answer
  • In △MNO, m = 20, n = 14, and m∠M = 51°. How many distinct triangles can be formed given these measurements?
    13·2 answers
  • F(x) = 4x – 13<br> g(x) = 3x2 – 7x – 13<br> Find: f(g(x))
    7·1 answer
  • SOMEONE PLSSS HELP ME ON NUMBER 7&amp; 8 PLSSSSSS
    11·1 answer
  • 5x + 3y + 7x3 - 2y - 4x2
    10·2 answers
  • Find the value of x. Round your answer to the nearest tenth<br> (Will give brainiest)
    15·1 answer
  • What is the difference? 9/4 - 1/7​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!