Answer:
correct
Step-by-step explanation:
To set the equation,we can first find how much price would be raised within a year:
=500×(1+7%)
=500×1.07
As the years go by the increase would accumulate,and the equation would be:

Hope it helps!
Answer:
a)
a1 = log(1) = 0 (2⁰ = 1)
a2 = log(2) = 1 (2¹ = 2)
a3 = log(3) = ln(3)/ln(2) = 1.098/0.693 = 1.5849
a4 = log(4) = 2 (2² = 4)
a5 = log(5) = ln(5)/ln(2) = 1.610/0.693 = 2.322
a6 = log(6) = log(3*2) = log(3)+log(2) = 1.5849+1 = 2.5849 (here I use the property log(a*b) = log(a)+log(b)
a7 = log(7) = ln(7)/ln(2) = 1.9459/0.6932 = 2.807
a8 = log(8) = 3 (2³ = 8)
a9 = log(9) = log(3²) = 2*log(3) = 2*1.5849 = 3.1699 (I use the property log(a^k) = k*log(a) )
a10 = log(10) = log(2*5) = log(2)+log(5) = 1+ 2.322= 3.322
b) I can take the results of log n we previously computed above to calculate 2^log(n), however the idea of this exercise is to learn about the definition of log_2:
log(x) is the number L such that 2^L = x. Therefore 2^log(n) = n if we take the log in base 2. This means that
a1 = 1
a2 = 2
a3 = 3
a4 = 4
a5 = 5
a6 = 6
a7 = 7
a8 = 8
a9 = 9
a10 = 10
I hope this works for you!!
You do 90-45 bc the whole angel must equal 90
The first letter can be any one of 26 letters. For each one . . .
The second letter can be any one of 26 letters. For each one . . .
The first digit can be any one of 10 digits. For each one . . .
The second digit can be any one of 10 digits. For each one . . .
The third digit can be any one of 10 digits. For each one . . .
The fourth digit can be any one of 10 digits. For each one . . .
The fifth digit can be any one of 10 digits.
The total number of possibilities is
(26 x 26 x 10 x 10 x 10 x 10 x 10) =
( 26² x 10⁵) = (676 x 100,000) = <em>67,600,000</em> .