Answer: The concentration of hydrogen ions for this solution is
.
Explanation:
Given: pOH = 11.30
The relation between pH and pOH is as follows.
pH + pOH = 14
pH + 11.30 = 14
pH = 14 - 11.30
= 2.7
Also, pH is the negative logarithm of concentration of hydrogen ions.
![pH = - log [H^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5BH%5E%7B%2B%7D%5D)
Substitute the values into above formula as follows.
![pH = -log [H^{+}]\\2.7 = -log [H^{+}]\\conc. of H^{+} = 1.99 \times 10^{-3}](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C2.7%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5Cconc.%20of%20H%5E%7B%2B%7D%20%3D%201.99%20%5Ctimes%2010%5E%7B-3%7D)
Thus, we can conclude that the concentration of hydrogen ions for this solution is
.
Answer:
The correct approach is Option B (Peer Review).
Explanation:
- Rather made reference to someone as a scientific peer-review, it encourages the specialist who has not been essential to the study team to analyze the study objectively and pointed out everyone's mistakes. It serves as major self-regulation for scholars and aims to make the publishing process somewhat credible. Hence, the solution to this issue is Peer Examination.
- Funding organizations rarely have the capabilities to recognize out mistakes, whereas definitive analysis is a method of study that helps to make a definitive statement. The gathering of data is simply a process of scientific study.
Other approaches do not apply to the example mentioned. Although the one mentioned is right.
The answer is a because its not low ductile or gasst
Answer is: osmotic pressure.
Osmotic pressure, alongside the vapor pressure depression, freezing point depression and the boiling point elevation are<span> the </span>colligative properties od solution.
<span>The direction of osmotic pressure is always from the side with the lower concentration (c = n/V) of solute to the side with the higher concentration.</span>
Answer:
Look Below
Explanation:
Capillary action is adhesion of water. In plants, capillary action allows water to move from the roots to leaves. In animals, capillary action plays a role in respiration where oxygen-poor blood oxygenates in the capillaries.