F(x) = 18-x^2 is a parabola having vertex at (0, 18) and opening downwards.
g(x) = 2x^2-9 is a parabola having vertex at (0, -9) and opening upwards.
By symmetry, let the x-coordinates of the vertices of rectangle be x and -x => its width is 2x.
Height of the rectangle is y1 + y2, where y1 is the y-coordinate of the vertex on the parabola f and y2 is that of g.
=> Area, A
= 2x (y1 - y2)
= 2x (18 - x^2 - 2x^2 + 9)
= 2x (27 - 3x^2)
= 54x - 6x^3
For area to be maximum, dA/dx = 0 and d²A/dx² < 0
=> 54 - 18x^2 = 0
=> x = √3 (note: x = - √3 gives the x-coordinate of vertex in second and third quadrants)
d²A/dx² = - 36x < 0 for x = √3
=> maximum area
= 54(√3) - 6(√3)^3
= 54√3 - 18√3
= 36√3.
Assumed
PW as 100
FW as twice PW as 200
answer is 7.27254 years
manually take the log of both sides and solve for n
Answer:
The answer is c) 761.0
Step-by-step explanation:
Mathematical hope (also known as hope, expected value, population means or simply means) expresses the average value of a random phenomenon and is denoted as E (x). Hope is the sum of the product of the probability of each event by the value of that event. It is then defined as shown in the image, Where x is the value of the event, P the probability of its occurrence, "i" the period in which said event occurs and N the total number of periods or observations.
The variance of a random variable provides an idea of the dispersion of the random variable with respect to its hope. It is then defined as shown in the image.
Then you first calculate E [x] and E [
], and then be able to calculate the variance.
![E[x]=0*\frac{1}{40} +10*\frac{1}{20} +50*\frac{1}{10} +100*\frac{33}{40}](https://tex.z-dn.net/?f=E%5Bx%5D%3D0%2A%5Cfrac%7B1%7D%7B40%7D%20%2B10%2A%5Cfrac%7B1%7D%7B20%7D%20%2B50%2A%5Cfrac%7B1%7D%7B10%7D%20%2B100%2A%5Cfrac%7B33%7D%7B40%7D)
![E[x]=0+\frac{1}{2} +5+\frac{165}{2}](https://tex.z-dn.net/?f=E%5Bx%5D%3D0%2B%5Cfrac%7B1%7D%7B2%7D%20%2B5%2B%5Cfrac%7B165%7D%7B2%7D)
E[X]=88
So <em>E[X]²=88²=7744</em>
On the other hand
![E[x^{2} ]=0^{2} *\frac{1}{40} +10^{2} *\frac{1}{20} +50^{2} *\frac{1}{10} +100^{2} *\frac{33}{40}](https://tex.z-dn.net/?f=E%5Bx%5E%7B2%7D%20%5D%3D0%5E%7B2%7D%20%2A%5Cfrac%7B1%7D%7B40%7D%20%2B10%5E%7B2%7D%20%2A%5Cfrac%7B1%7D%7B20%7D%20%2B50%5E%7B2%7D%20%2A%5Cfrac%7B1%7D%7B10%7D%20%2B100%5E%7B2%7D%20%2A%5Cfrac%7B33%7D%7B40%7D)
E[x²]=0+5+250+8250
<em>E[x²]=8505
</em>
Then the variance will be:
Var[x]=8505-7744
<u><em>Var[x]=761
</em></u>
Answer:
The correct answer is option D, 20ft
Step-by-step explanation:
After drawing the picture below, you can just use pythagorean theorem to solve for the diagonal, or the hypotenuse in this case;
(Length)² + (Width)² = (Diagonal)²
(16)² + (12)² = (Diagonal)²
256 + 144 = (Diagonal)²
400 = (Diagonal)²
= 
<em>20 = Diagonal</em>
<em>Hope this helps!</em>