<u>Answers:</u>
These are the three major and pure mathematical problems that are unsolved when it comes to large numbers.
The Kissing Number Problem: It is a sphere packing problem that includes spheres. Group spheres are packed in space or region has kissing numbers. The kissing numbers are the number of spheres touched by a sphere.
The Unknotting Problem: It the algorithmic recognition of the unknot that can be achieved from a knot. It defined the algorithm that can be used between the unknot and knot representation of a closely looped rope.
The Large Cardinal Project: it says that infinite sets come in different sizes and they are represented with Hebrew letter aleph. Also, these sets are named based on their sizes. Naming starts from small-0 and further, prefixed aleph before them. eg: aleph-zero.
-t-3 and 3-t are not the same since t-3 would result in a negative answer since both -t and -3 are negative. While in t-3 t is positive and -3 is negative. it is wrong if its left as t-3 since -t-3=3-t is false.
Answer:
that equation isn't factorable
Answer:
They lose about 2.79% in purchasing power.
Step-by-step explanation:
Whenever you're dealing with purchasing power and inflation, you need to carefully define what the reference is for any changes you might be talking about. Here, we take <em>purchasing power at the beginning of the year</em> as the reference. Since we don't know when the 6% year occurred relative to the year in which the saving balance was $200,000, we choose to deal primarily with percentages, rather than dollar amounts.
Each day, the account value is multiplied by (1 + 0.03/365), so at the end of the year the value is multiplied by about
... (1 +0.03/365)^365 ≈ 1.03045326
Something that had a cost of 1 at the beginning of the year will have a cost of 1.06 at the end of the year. A savings account value of 1 at the beginning of the year would purchase one whole item. At the end of the year, the value of the savings account will purchase ...
... 1.03045326 / 1.06 ≈ 0.9721 . . . items
That is, the loss of purchasing power is about ...
... 1 - 0.9721 = 2.79%
_____
If the account value is $200,000 at the beginning of the year in question, then the purchasing power <em>normalized to what it was at the beginning of the year</em> is now $194,425.14, about $5,574.85 less.
Answer:
neither
Step-by-step explanation:
because the square root is not whole number and neither is the cube root of 165. so it is neither