Answer: choice B) a35 = -118
=====================================================
Explanation:
When n = 5, an = 32 as shown in the first column of the table. This means the fifth term is 32. Plug in those values to get
an = a1+d(n-1)
32 = a1+d(5-1)
32 = a1+4d
Solve for a1 by subtracting 4d from both sides
a1 = 32-4d
We'll plug this in later
Turn to the second column of the table. We have n = 10 and an = 7. Plug those values into the formula
an = a1+d(n-1)
7 = a1 + d(10-1)
7 = a1+9d
Now substitute in the equation in which we solved for a1
7 = a1+9d
7 = 32-4d+9d ... replace a1 with 32-4d
7 = 32+5d
5d = 7-32
5d = -25
d = -25/5
d = -5
This tells us that we subtract 5 from each term to get the next term.
Use this d value to find a1
a1 = 32-4d
a1 = 32-4*(-5)
a1 = 32+20
a1 = 52
The first term is 52
--------------
The nth term formula is therefore
an = 52 + (-5)(n-1)
which simplifies to
an = -5n + 57
To check this result, plug in n = 5 to find that a5 = 32. Similarly, you'll find that a10 = 7 after plugging in n = 10. I'll let you do these checks.
--------------
Replace n with 35 to find the 35th term
an = -5n + 57
a35 = -5(35) + 57
a35 = -175 + 57
a35 = -118
Answer:
3/2
Step-by-step explanation:
● (-3/8) ÷(-1/4)
Flip the second fraction by putting 1 instead 4 and vice versa.
● (-3/8)* (-4/1)
-4 over 1 is -4 since dividing by 1 gives the same number.
● (-3/8)*(-4)
Eliminate the - signs in both fractions since multiplying two negative numbers by each other gives a positive number.
●( 3/8)*4
● (3*4/8)
8 is 2 times 4
● (3*4)/(4*2)
Simplify by eliminating 4 in the fraction.
● 3/2
The result is 3/2
S=16t^2
if t=3
So you would plug it in
16(3)^2
Then you multipy
16*3^2
=144
It is easier if you use a calculator just type in ti 30 calculator online that should help
15, 28, 41.
add the common difference to each consecutive term to find the next term in the sequence.
2+ 13= 15
15+ 13= 28
28+ 13= 41