Answer:
B. (-3, -2)
Step-by-step explanation:
Multiply the first equation by -1/3 and add the result to the second equation.
-1/3(3x -3y) +(5x -y) = -1/3(-3) +-13
4x = -12 . . . . simplify
x = -3 . . . . . . divide by 4
Substituting this into -1/3 times the first equation, we get ...
-(-3) +y = 1
y = -2 . . . . . . . subtract 3
The solution is (x, y) = (-3, -2).
Answer:
600 because it is in the hundreds place
Step-by-step explanation:
Answer:
The circulation of the field f(x) over curve C is Zero
Step-by-step explanation:
The function
and curve C is ellipse of equation

Theory: Stokes Theorem is given by:

Where, Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Also, f(x) = (F1,F2,F3)

Using Stokes Theorem,
Surface is given by g(x) = 
Therefore, tex]\hat{N} = grad(g(x))[/tex]


Now, 
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5CF1%26F2%26F3%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = ![\left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\x^{2}&4x&z^{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Chat%7Bi%7D%26%5Chat%7Bj%7D%26%5Chat%7Bk%7D%5C%5C%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82x%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82y%7D%20%26%5Cfrac%7B%E2%88%82%7D%7B%E2%88%82z%7D%20%5C%5Cx%5E%7B2%7D%264x%26z%5E%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Curl f(x) = (0,0,4)
Putting all values in Stokes Theorem,



I=0
Thus, The circulation of the field f(x) over curve C is Zero
Answer:
(3, 1)
Step-by-step explanation:
(a) Algebraic solution
(1) y = -⅔x + 3
(2) y = 2x - 5
Set Equation (1) equal to Equation (2)
-⅔x + 3 = 2x - 5
Multiply each side by 3
-2x + 9 = 6x - 15
Add 15 to each side
-2x + 24 = 6x
Add 2x to each side
24 = 8x
Divide each side by 3
(3) x = 3
Substitute (3) into (2)
y = 2×3 - 5 = 6 - 5 = 1
The ordered pair that makes both equations true is (3, 1).
(b) Graphical solution
In the diagram below, the red line is the graph of Equation (1). The blue line is the graph of Equation (2). The point of intersection is at (3, 1).
464 = 10w + 10u
464 = 10(11.60) + 10u
464 = 116 + 10u
384 = 10u
38.4 per jersey