Missing question: What is the rate constant for the reaction?
<span>[RS2](mol L-1) Rate (mol/(L·s))
0.150 0.0394
0.250 0.109
0.350 0.214
0.500 0.438</span>
Chemical reaction: 3RS₂ → 3R + 6S.
Compare second and fourth experiment, when concentration is doubled, rate of concentration is increaced by four. So rate is:
rate = k·[RS₂]².
k = 0,438 ÷ (0,500)².
k = 1,75 L/mol·s.
4 mol NH₃ → 5 mol N₂
x mol NH₃ → 0.824 mol N₂
x=0.824*4/5=0.6592 mol
Answer:
Magnesium chloride and water
Explanation:
Mg(OH)₂ + 2HCl ⟶ MgCl₂ + 2H₂O
magnesium chloride water
The big advantage to using continuous compounding to express growth rates is it avoids the problem of asymmetry in growth rates:
For example, if we use the normal definition and $100 grows to $105 in one time period, that's a growth rate of $105/$100 - 1 = 5% But if $105 decreases to $100, that's a growth rate of $100/$105 - 1 = -4.76%
The problem of asymmetry is those two growth rates, 5% and -4.75% are not equal up to a sign.
But if you use continuous compounding the growth rate in the first case is ln(105/100) = 0.04879.
And the growth rate in the second is ln (100/105) = -0.04879.
Those two growth rates are definitely the negative of each other.<span>
</span>