The answer ispotassium (K)
<span>7.15 degrees C
The specific heat capacity of water is 4.1813 J/(g*K). So we have 3 values with the units kJ, g and J/(g*K). We can trivially convert from kJ to J by multiplying by 1000. And we want to get a result with the unit K (degrees Kelvin). So let's do it. First, let's cancel out the g unit by multiplying.
4.1813 J/(g*K) * 485 g = 2027.9305 J/K
Now we can cancel out the J unit by dividing. But if we divide by the energy, we'll be left with the reciprocal of K, not K. So instead divide by the J/K unit. So
14500 J / 2027.9305 J/K = 7.150146418 K
Rounding to 3 significant figures gives us 7.15 K.
And since degrees C and degrees K are the same size, the temperature will increase by 7.15 degrees C</span>
Answer:

Explanation:
Hello,
This types of reactions are likely to be carried out in gaseous phase as it is easier to induce reactions, therefore, for us to compute the change in the enthalpy of this reaction we should write the formation enthalpy of gaseous methanol, hydrogen chloride, methyl chloride and water as -205.1, -92.3, -83.68 and -241.8 kJ/mol respectively. Then, the reaction enthalpy for this reaction is:

Which accounts for an exothermic chemical reaction.
Regards.
Answer:
False
Explanation:
The temperature at which a solid melts, known as its melting point is highly characteristic of a compound and element.
The melting point of pure substances, compounds and elements is definite and not varied.
- Melting point is an intensive property of matter.
- It does not depend on the amount of matter present.
- It is an innate or intrinsic property of every matter.
- For example, no matter the volume or mass of water, it will always boil at 100°C, all things being equal.
Therefore, melting point of most solids is characteristic of compounds and elements.
As against non-metals are the elements which are usually soft. ... Generally, the elements containing 1,2 or 3 electrons in the valence shell of their structure are known as metals. While the elements with 4, 5, 6 or 7 electrons in their outermost shell are known as non-metals.