I live in Florida as well. FL babyeeee. Melly’s hometown yk yk
Answer:
The correct options are;
1) Write tan(x + y) as sin(x + y) over cos(x + y)
2) Use the sum identity for sine to rewrite the numerator
3) Use the sum identity for cosine to rewrite the denominator
4) Divide both the numerator and denominator by cos(x)·cos(y)
5) Simplify fractions by dividing out common factors or using the tangent quotient identity
Step-by-step explanation:
Given that the required identity is Tangent (x + y) = (tangent (x) + tangent (y))/(1 - tangent(x) × tangent (y)), we have;
tan(x + y) = sin(x + y)/(cos(x + y))
sin(x + y)/(cos(x + y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y) - sin(x)·sin(y)) = (Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y))
(Sin(x)·cos(y) + cos(x)·sin(y))/(cos(x)·cos(y))/(cos(x)·cos(y) - sin(x)·sin(y))/(cos(x)·cos(y)) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
∴ tan(x + y) = (tan(x) + tan(y))(1 - tan(x)·tan(y)
Step-by-step explanation:
The system of equations for eq 1 which is 3x + y = 118 represents the Green High School which filled three buses(with a specific number of students identified as x) and a van(with a specific number of students identified as y) with a total of 118 students.
for eq 2; 4x + 2y = 164; represents Belle High School which filled four buses(with a specific number of students identified as x) and two vans(with a specific number of students identified as y) with a total of 164 students.
The solution represents the specific number of students in the buses and vans in eq1 and eq 2 with x being 36 students and y being 10 students.
substituting 36 for x and 10 for y in eq 1;
3(36) + 10 = 108 + 10 = 118 total students for Green High School
substituting 36 for x and 10 for y in eq2;
4(36) + 2(10) = 144 + 20 = 164 total students for Belle High school
the inside of quadrilateral is always 360°.So add 75°,90° and 75° and then subyaract from360°.
x+75°+75°+90°=360
×+240°=360°
x=360°-240°
x=120°