It is D, not here because they are all dependent.
Answer:
a) 6.68th percentile
b) 617.5 points
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

a) A student who scored 400 on the Math SAT was at the ______ th percentile of the score distribution.



has a pvalue of 0.0668
So this student is in the 6.68th percentile.
b) To be at the 75th percentile of the distribution, a student needed a score of about ______ points on the Math SAT.
He needs a score of X when Z has a pvalue of 0.75. So X when Z = 0.675.




Answer:
The area in factored form is
.
The area in standard form is
.
Step-by-step explanation:
The area of a rectangle is length times width.
So the area here is (x+2)(x-5).
They are probably not looking for A=(x+2)(x-5) because it requires too little work.
They probably want A in standard form instead of factored form.
Let's use foil:
First x(x)=x^2
Outer: x(-5)=-5x
Inner: 2(x)=2x
Last: 2(-5)=-10
---------------------Adding together:
.
The area in factored form is
.
The area in standard form is
.
Yes this is the best kind of question