Answer:
Suppose we have a random number A.
The multiplicative inverse of A is a number X such that:
A*X = 1
When we work with real numbers, X = 1/A
Then:
A*(1/A) = A/A = 1
This means that (1/A) is the multiplicative inverse of A.
Where we need to have A ≠ 0, because we can not divide by 0.
Now we want to find the multiplicative inverse of the numbers:
2: Here the inverse is (1/2) = 0.5
1/5: Here the inverse is (1/(1/5)) = (5/1) = 5
-4: Herre the inverse is (1/(-4)) = -(1/4) = -0.25
Answer: I couldn't help you,but here's the answer. I'm not the bot the bot doens't have a cute anime chacter as their profile pic.
https://www.chegg.com/homework-help/questions-and-answers/ben-paid-45-old-guitar-cleaned-guitar-resold-marking-price-15--used-36-money-got-guitar-bu-q66963289
The answer is b ...........................................................b............b..............
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)