Using the formula:
V= 1/6 πd^3
V ≈ 1838.78
Answer:
a = 36°
b = 144°
Step-by-step explanation:
<h3><u>Method 1</u></h3>
Number of sides = n = 10
Sum of interior angles = (n - 2) × 180°
= (10 - 2) × 180°
= 8 × 180°
= 1440°
Interior angle = b = sum of interior angles ÷ number of sides
b = 1440 ÷ 10
b = 144°
a + b = 180° (Sum of angles in the straight line)
a + 144° = 180°
a + 144° - 144° = 180° - 144°
a = 36°
<h3><u>Method 2</u></h3>
Number of sides = 10
Exterior angle = a = 360° ÷ Number of sides
a = 360° ÷ 10
a = 36°
a + b = 180° (Sum of angles in the straight line)
36° + b = 180°
36° + b - 36° = 180° - 36°
b = 144°
95141 1404 393
Answer:
- arc BC: 8.55 cm
- chord BC: 8.03 cm
Step-by-step explanation:
The length of an arc that subtends central angle α will be ...
s = rα . . . . where α is in radians
The central angle BOC is twice the measure of angle QBC, so is 70°, or 7π/18 radians. So, the length of arc BC is ...
s = (7 cm)(7π/18) ≈ 8.55 cm . . . arc BC
__
For central angle α and radius r, the chord subtending the arc is ...
c = 2r·sin(α/2)
c = 2(7 cm)sin(35°) ≈ 8.03 cm . . . . chord AB
Do you still need help?!?!