Answer:

Step-by-step explanation:
Consider the options for this question are as follow,
Here, In triangles ABC and PQR,
AB = c, BC = a, AC = b, PQ = r, QR = p and PR = q,
Since,

We know that,
The corresponding sides of similar triangles are in same proportion,
Thus,




The fundamental theorem of algebra states that a polynomial with degree n has at most n solutions. The "at most" depends on the fact that the solutions might not all be real number.
In fact, if you use complex number, then a polynomial with degree n has exactly n roots.
So, in particular, a third-degree polynomial can have at most 3 roots.
In fact, in general, if the polynomial
has solutions
, then you can factor it as

So, a third-degree polynomial can't have 4 (or more) solutions, because otherwise you could write it as

But this is a fourth-degree polynomial.
The last choice is right sure because this is a perfect square trinomial
(4xy -3z)^2 = 16x^2y^2 -24xyz +9z^2
hope this will help you

<em> </em><em>Linear</em><em> </em><em>Pair</em><em> </em>: - <em>Two</em><em> </em><em>adjacent</em><em> </em><em>Angles</em><em> </em><em>are</em><em> </em><em>set</em><em> </em><em>to</em><em> </em><em>form</em><em> </em><em>a</em><em> </em><em>linear</em><em> </em><em>pair</em><em> </em><em>of</em><em> </em><em>angles</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>not</em><em> </em><em>common</em><em> </em><em>arm</em><em> </em><em>are</em><em> </em><em>two</em><em> </em><em>opposite</em><em>,</em><em> </em><em>is</em><em> </em><em>called</em><em> </em><em>linear</em><em> </em><em>pair</em><em> </em>~™