Answer:
Have 2 filled orbitals and 3 partially filled orbitals.
Explanation:
Hello there!
In this case, according to the given information of the electron configuration for that particle; it is possible for us to infer it has 5 valence electrons, as the electrons on its outermost shell (2). Moreover, we undertand this particle needs three bonds, does not have neither the electron configuration of a noble gas which ends by p⁶ nor that of an alkali earth metal as it ends by s².
Therefore, we infer the correct answer is Have 2 filled orbitals and 3 partially filled orbitals because according to the Hund's rule, the s orbital is fulfilled and the p orbital has 1 electron orbital fulfilled and two partially filled orbitals.
Regards!
Answer: 8556 mm, or 855.6 cm (8560 mm to 3 sig figs)
Explanation: Convert mm to cm by dividing by 10 (1cm/10mm)
Find the area of the foil face in cm^2 (30cm*0.2020cm) = 0.606 cm^2
Calculate the volume occupied by 1.40 kg of foil in cm^3. 1.40kg = 1400g
1.400g/(2.7 g/cm^3) = 518.5 cm^3 for 1.40 kg Au
Volume = Area (of the face) * Length
We want Length:
Length = Volume/Area
L = (518.5 cm^3/0.606 cm^2)
L = 855.6 cm (8556 mm) Round to 3 sig figs (856 cm and 8560 mm)
Answer: The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
Explanation:
According to avogadro's law, equal volumes of all gases at same temperature and pressure have equal number of moles.
According to avogadro's law, 1 mole of every substance contains avogadro's number
of particles.
Thus as oxygen and nitrogen are at same temperature and pressure and are in equal volume flasks , they have same number of moles and thus have same number of molecules.
The ratio of the number of oxygen molecules to the number of nitrogen molecules in these flasks is 1: 1
Answer: seas
Explanation:
The ancient astronomers thought the mares on the moon were seas.
Answer:
C3H6 + Br2 → C3H6Br2
Explanation:
The reaction in which C3H6Br2 (1,2-Dibromopropane) is created is:
We can see that the only difference between the product (C3H6Br2) and the known reactant (C3H6) of the reaction is two bromine atoms (Br2). Br2 is diatomic bromine - a molecule we get after combining two bromine atoms. This compound is a red-brown liquid at room temperature, which means that that is the liquid described in your question.