Because <span>Gold is a very inert metal, and won't really react with oxygen in the air.
The only reason other metals tarnish, such as copper, silver, steel/iron, is
because they're freely reacting with air, to produce a metal oxide surface layer. </span>
Answer:
The molar mass is the mass of a given chemical element or chemical compound (g) divided by the amount of substance (mol). The molar mass of a compound can be calculated by adding the standard atomic masses (in g/mol) of the constituent atoms.
Answer:
Mass = 64 g
Explanation:
Given data:
Mass of water produced = 36 g
Mass of oxygen needed = ?
Solution:
Chemical equation:
CH₄ + 2O₂ CO₂ + 2H₂O
Number of moles of water produced:
Number of moles = mass/molar mass
Number of moles = 36 g/ 18 g/mol
Number of moles = 2 mol
Now we will compare the moles of water and oxygen.
H₂O : O₂
2 : 2
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 2 mol × 32 g/mol
Mass = 64 g
I don't have a graph but here's what I think. The relationship is that the volume will change depending on the temperature. So think of water for an example. The volume of it will stay the same at room temperature, but if you put a glass of it in the freezer for a few hours, take it out, measure the volume, the volume would have changed greatly. Or heating and evaporating the water will do the same.
The chemical structure of 2,2,3-trimethylbutane is shown as attached document. In a condensed structural formula, a branched chain is shown in bracket ().
So according to the chemical structure, the correct condensed structural formula for this molecule is CH3C(CH3)CH(CH3)2