We can start to solve this problem by using what we know. The recipe calls for 2/3 cup of flour per 1/4 batch of cookies. Now, If we want to write the rate as a complex fraction, we can replace the per with a division sign. This makes it become (2/3)/(1/4) or
Answer:
55
Step-by-step explanation:
Answer:
; 5
Step-by-step explanation:
Given series :
Sum of series = ![S_n=\sum^{\infty}_{1}\ [\dfrac{5}{n\cdot(n+1)}]=5[\sum^{\infty}_{1}\dfrac{1}{n\cdot(n+1)}]](https://tex.z-dn.net/?f=S_n%3D%5Csum%5E%7B%5Cinfty%7D_%7B1%7D%5C%20%5B%5Cdfrac%7B5%7D%7Bn%5Ccdot%28n%2B1%29%7D%5D%3D5%5B%5Csum%5E%7B%5Cinfty%7D_%7B1%7D%5Cdfrac%7B1%7D%7Bn%5Ccdot%28n%2B1%29%7D%5D)
Consider 

⇒ ![S_n=5\sum^{\infty}_{1}\dfrac{1}{n\cdot(n+1)}=5\sum^{\infty}_{1}[\dfrac{1}{n}-\dfrac{1}{n+1}]](https://tex.z-dn.net/?f=S_n%3D5%5Csum%5E%7B%5Cinfty%7D_%7B1%7D%5Cdfrac%7B1%7D%7Bn%5Ccdot%28n%2B1%29%7D%3D5%5Csum%5E%7B%5Cinfty%7D_%7B1%7D%5B%5Cdfrac%7B1%7D%7Bn%7D-%5Cdfrac%7B1%7D%7Bn%2B1%7D%5D)
Put values of n= 1,2,3,4,5,.....n
⇒ 
All terms get cancel but First and last terms left behind.
⇒ 
Formula for the nth partial sum of the series :

Also, 

Answer:
21 books
Step-by-step explanation:
130-4=x
x/6= answer
Answer:






i hope this will help you :)
=1,075
Therefore,
\frac{43}{4} =1,075
Hope it helps you!!!
Plz Mark me as a brailiest
Step-by-step explanation: