Multiplying the two together, you get an equation such as
-6x^4 - 12x^3 +33x^2 +12x -27.
Answer:
<h3>For two events A and B show that P (A∩B) ≥ P (A)+P (B)−1.</h3>
By De morgan's law

which is Bonferroni’s inequality
<h3>Result 1: P (Ac) = 1 − P(A)</h3>
Proof
If S is universal set then

<h3>Result 2 : For any two events A and B, P (A∪B) = P (A)+P (B)−P (A∩B) and P(A) ≥ P(B)</h3>
Proof:
If S is a universal set then:

Which show A∪B can be expressed as union of two disjoint sets.
If A and (B∩Ac) are two disjoint sets then
B can be expressed as:

If B is intersection of two disjoint sets then

Then (1) becomes

<h3>Result 3: For any two events A and B, P(A) = P(A ∩ B) + P (A ∩ Bc)</h3>
Proof:
If A and B are two disjoint sets then

<h3>Result 4: If B ⊂ A, then A∩B = B. Therefore P (A)−P (B) = P (A ∩ Bc) </h3>
Proof:
If B is subset of A then all elements of B lie in A so A ∩ B =B
where A and A ∩ Bc are disjoint.

From axiom P(E)≥0

Therefore,
P(A)≥P(B)
Hey, should be 3 american quarts
Let X be the number of energy drinks sold.
The manufacturer of an energy drink spends $1.20 to make each drink and sells them for two dollars the manufacturer also has fixed cost each month of $8000.
The manufacturing cost for X energy drinks is

Fixed cost is $8000.
Therefore, cost function is

Selling price of each drink is $2.
Therefore, the revenue function is

Hence, the revenue function is
It is already simplified, three goes into three once but three cant go into 32 without there being a remainder.