The statement is false, as the system can have no solutions or infinite solutions.
<h3>
Is the statement true or false?</h3>
The statement says that a system of linear equations with 3 variables and 3 equations has one solution.
If the variables are x, y, and z, then the system can be written as:

Now, the statement is clearly false. Suppose that we have:

Then we have 3 parallel equations. Parallel equations never do intercept, then this system has no solutions.
Then there are systems of 3 variables with 3 equations where there are no solutions, so the statement is false.
If you want to learn more about systems of equations:
brainly.com/question/13729904
#SPJ1
Answer:
Null hypothesis is: U1 - U2 ≤ 0
Alternative hypothesis is U1 - U2 > 0
Step-by-step explanation:
The question involves a comparison of the two types of training given to the salespeople. The requirement is to set up the hypothesis that type A training leads to higher mean weakly sales compared to type B training.
Let U1 = mean sales by type A trainees
Let U2 = mean sales by type B trainees
Therefore, the null hypothesis (H0) is: U1 - U2 ≤ 0
This implies that type A training does not result in higher mean weekly sales than type B training.
The alternative hypothesis (H1) is: U1 - U2 > 0
This implies that type A training indeed results in higher mean weekly sales than type B training.
You need to multiply 30 by 6 so 30times6 =your answer
The Answer Is 21.6 repeating
Answer:
put a picture up
Step-by-step explanation: