The arrangement of the solutions based on their absorption from highest frequency to lowest frequency :
b.
> c.
> a.NaCl
<h3>What is absorption frequency?</h3>
- The frequency of the molecular vibration that led to the absorption is the same as the absorption frequency of a basic IR absorption band.
- In a way, an emission spectrum is the opposite of an absorption spectrum.
- The discrepancies in the energy levels of each chemical element's orbitals correspond to absorption lines for each chemical element at various particular wavelengths.
- Therefore, it is possible to identify the constituents in a gas or liquid using its absorption spectrum.
- Absorption spectroscopy is most frequently used to measure infrared, atomic, visible, ultraviolet (UV), and x-ray waves.
Learn more about Absorption frequency here:
brainly.com/question/5032775
#SPJ4
Grams ethanol = 33 ml times .789 gms/ml = 26.037 gms
<span>Moles ethanol = 26.037 gms / 46 gms/mole = .57 moles </span>
<span>Moles water = 67 ml or 67 grams/18 gms/mole = 3.22 moles </span>
<span>total moles = .57 + 3.72 = 4.29 moles </span>
<span>Mole fraction ethanol = .57 moles ethanol / 4.29 moles total = 0.13</span>
<span>Moles fraction water = 3.72 moles water / 4.29 moles total = 0.87</span>
<span>Partial pressure of ethanol = mole fraction ethanol (.13) _ times VP ethanol 43.9 torr) = 5.707 torr </span>
<span>partial pressure water = mole fraction water .87) times VP water (l7.5 torr) = 15.23 torr </span>
<span>Total vapor pressure over solution = 5.71 torr + 15.23 torr = 20.94 torr</span>
The answer to the question is- Fe2O3
Answer:
They are strong intermolecular forces
Explanation:
Covalent forces are very strong intermolecular forces. In fact, we can say they are the strongest. This is because several big and giant molecules have covalent bonds holding their molecules together. A good example of this is the buckministerfullerence molecule which contains carbon atom to the order of 60 carbon atoms. It is a very giant molecule and it is covalent bond that is holding the molecules together
The strongest substance in the world is diamond. It is so strong that no other substance can cut it asides another diamond. As strong as it is, the molecule is held together by very strong intermolecular forces of covalent bonds which confers the strength it has on it