Hey ! there
Answer:
- Value of missing side i.e. TE is <u>1</u><u>2</u><u> </u><u>feet</u>
Step-by-step explanation:
In this question we are provided with a <u>right</u><u> </u><u>angle </u><u>triangle</u> having <u>TS </u><u>-</u><u> </u><u>35</u><u> </u><u>ft </u><u>and</u><u> </u><u>SE </u><u>-</u><u> </u><u>37</u><u> </u><u>ft </u>. And we are asked to find the missing side that is <u>TE </u>using Pythagorean Theorem .
<u>Pythagorean Theorem :</u> -
According to Pythagorean Theorem sum of squares of perpendicular and base is equal to square of hypotenuse in a right angle triangle i.e.
<u>Where </u><u>,</u>
- H refers to <u>Hypotenuse</u>
- P refers to <u>Perpendicular</u>
<u>Solution</u><u> </u><u>:</u><u> </u><u>-</u>
In the given triangle ,
- Perpendicular = <u>TS </u><u>(</u><u> </u><u>35</u><u> </u><u>feet </u><u>)</u>
- Hypotenuse = <u>SE </u><u>(</u><u> </u><u>37</u><u> </u><u>feet </u><u>)</u>
Now applying Pythagorean Theorem :

Substituting values :

Simplifying it ,

Subtracting 1225 on both sides :

We get ,

Applying square root to both sides :

We get ,

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>value </u><u>of </u><u>missing </u><u>side </u><u>is </u><em><u>1</u></em><em><u>2</u></em><em><u> </u></em><em><u>feet </u></em><em><u>.</u></em>
<u>Verifying</u><u> </u><u>:</u><u> </u><u>-</u>
Now we are verifying our answer using Pythagorean Theorem . We know that according to Pythagorean Theorem ,
Substituting value of SE , TS and TE :
- 37² = 35² + <u>1</u><u>2</u><u>²</u>
<u>Therefore</u><u> </u><u>,</u><u> </u><u>our</u><u> answer</u><u> is</u><u> correct</u><u> </u><u>.</u>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
Answer:
w=5
Step-by-step explanation:
firstly angle SUT and angle SUV are congruent, hence:
w+10=3w
10=3w-w
10=2w
10/2=w
5=w
Hello there,
To write an improper fraction you will have to divide whole number by denominator than add the numerator...
7 * 1 = 7
7 + 4 = 11
The denominator stays the same...
11/7
Answer: 11/7
Hope I helped!!
-Char
Answer:
I have no idea.
Step-by-step explanation:
I failed geometry.
Answer:
x = 4 or x = -3/2
Step-by-step explanation:
To simplify and solve this, let's use the quadratic formula.
So the format of a quadratic equation is supposed look like this:

Let's find a, b, c:
- a is the coefficient of x^2
- b is the coefficient of x
- c is the constant term
Now let's solve the equation.
Let's solve your equation step-by-step.
2x^2−5x−12=0
For this equation: a=2, b=-5, c=-12
2x^2+−5x+−12=0
Step 1: Use quadratic formula with a=2, b=-5, c=-12.



or 
<u />
<u>Answer:</u>
x = 4 or x = -3/2