Answer:
What best describes how transferrin is transported through the erythrocyte plasma membrane is receptor-mediated endocytosis.
Explanation:
The incorporation of transferrin across the erythrocyte membrane depends on a transferrin receptor expressed on the surface of the membrane. The specific receptor recognizes the presence of iron-charged transferrin, transferin diferrica, incorporating it into the cell by endocytosis. Once in the cytoplasm, the iron is dissociated from the transferrin.
Free transferrin is called apotransferrin. The transferrin receptor has a high affinity for transferrin di-ferrica, which facilitates its incorporation by endocytosis, and the release of apotransferrin into the extracellular space.
The other options are not correct because:
<em> A. </em><u><em>Exocytosis</em></u><em> implies the exit of substances from the cell.</em>
<em> B. </em><u><em>Pinocytosis</em></u><em> involves the invagination of the membrane to incorporate soluble substances into the cell.</em>
<em> C. </em><u><em>Phagocytosis</em></u><em> is the incorporation of solid substances by invagination of the membrane.</em>
A conversational plan with two habitat preserves, measuring a total of 20 square kilometers combined will preserve more species because this cause segregation of species based on their adaptability towards a safer and secure environment. For example if a lion and deer try to live in the same conservation area, then it’s obvious that the life of deer is always at risk. But in cases of segregated preserved areas both herbivorous and carnivorous animals can live separately. Also if there is special inclination of one species towards other then also these two species can live separately.
Segregation also enhances the diversity in the sense that it could lead to a new ecosystem with a new ecological balance within it. Conservation biologists focus on these areas as they claim that where the greatest number of unique species can be found and protected with in the large number of reserve areas with the least amount of effort
Answer:
Glycolysis
Explanation:
Glycolysis is the first step in cellular respiration, both aerobic and anaerobic.
Glycolysis occurs in the cytoplasm, whereas other steps of aerobic respiration occur in the mitochondria.
During glycolysis, a six carbon glucose molecule is broken down into two three carbon molecules of pyruvic acid. This process yields two molecules of ATP. Two hydrogen ions and two molecules of water are also released during the process.